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Abstract

The Permian Basin of Texas has a marine record that extends through the Late Permian. Thus changes in sea level that, in part, reflect
changes in southern ice sheets of Gondwana are recorded within these Permian low-latitude strata. A U-Pb-carbonate-age-constrained
87Sr/86Sr trend shows a rapid decline from a Pennsylvanian high of 0.70825, to a Carboniferous-Permian boundary value of 0.70815,
consistent with published Sr trends and U-Pb zircon ages from the type sections in the Urals. The decline in 87Sr/86Sr is coincident
with multiple lines of evidence for increasing aridity in the Pangean tropics and results from a decrease in continental contributions to
the global marine Sr reservoir relative to other sources. This trend of declining Sr is consistent with reduced silicate weathering.

Permian Basin icehouse-style high-amplitude and high-frequency cycles (cyclothems) are replaced by greenhouse-style low-amplitude
cycles at Wichita/Abo (Sakmarian) time. This change follows a 17 km step-back of the shelf deposits on the Central Basin Platform
that is interpreted as a major transgression. This transgression occurred at an 87Sr/86Sr value of approximately 0.7078, no more than
6 million years after the onset of aridity. A model that links these observations is that reduced silicate weathering caused an increase
in pCO,, which has been recognized by terrestrial proxy records, and that the increase in this greenhouse gas was responsible for
collapse of the long-lived Carboniferous-Permian glaciers. Transitional type cycles recognized in the Guadalupian may relate to a last
pulse of Permian glaciation recognized in Australia.
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Ronald Blakey, NAU

These are paleoreconstruction globes from Ronald Blakey at Northern Arizona
Univ. The upper ones are for Late Pennsylvanian, right before the
Carboniferous-Permian boundary. It shows glaciers in the southern
hemisphere; the major mountain belt right at the equator is from the suturing
of Africa (east) and South America (west) to North America during the
assembly of the supercontinent Pangea. Note even though the continental
masses are touching here, Blakey shows more water in the tropical latitudes
than in the next diagram. Red star show the approximate area of our study.
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Pt e Tubuiar foram packstone DEEPENING
' (A. Saller)

Typical cycle from the Central Basin Platform of the Midland Basin. The
cycles range in thickness but are typically about 1 meter thick. They reflect
forced regressions with subaearial exposure events. The cycles are deeper
water near the base and show a typical shallowing-up sequence reflected in
mud-rich carbonates changing upward into grainstones. The tops of cycles
are marked by unconformities with evidence of soil formation. Calcretes
from some of these cycle tops were dated by U-Pb, providing the age
constraints for the present study.
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