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Abstract

Traditional reservoir simulation and modeling is a bottom-up approach. It starts with building a geological model of the reservoir, adding
engineering fluid flow principles to arrive at a dynamic reservoir model. The dynamic reservoir model is calibrated using the production
history of multiple wells and the history matched model is used to strategize field development in order to improve recovery.

Top-Down full field subsurface modeling approaches the reservoir simulation and modeling from an opposite angle by attempting to build a
realization of the reservoir starting with well production behavior (history). The production history is augmented by core, log, well test and
seismic data in order to increase the accuracy and fine tune the Top-Down model. The model is then calibrated (history matched) using the
most recent wells as blind dataset.

Although not intended as a substitute for the traditional reservoir simulation of large, complex fields, this innovative and novel approach can
be used as an alternative (at a fraction of the cost) to traditional reservoir simulation in cases where performing traditional modeling is cost
(and man-power) prohibitive. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered as
a complement to, rather than a competition for the traditional technique. It provides an independent look at the data coming from the
reservoir/wells for optimum development strategy and recovery enhancement.

Top-Down Modeling is an elegant integration of state-of-the-art in Artificial Intelligence & Data Mining (AI&DM) with solid reservoir
engineering techniques and principles. It provides a unique perspective of the field and the reservoir using actual measurements. It provides
qualitatively accurate reservoir characteristics that can play a key role in making important and strategic field development decisions.

In this article, principles of Top-Down modeling are discussed along with an actual case study. Furthermore, validation of the top-down
model using traditional simulation and modeling will also be presented and discussed.
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e Definition of TDIRM



Top-Down, Intelligent Reservoir
Modeling (TDIRM)

Definition

e A full-field, cohesive model of fluid flow in the
hydrocarbon reservoir, developed based on
production behavior of multiple wells and by
integrating reservoir engineering principles

with state-of-the-art in Artificial Intelligence
and Data Mining (AI&DM).
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Top-Down Modeling
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 Advantages & Disadvantages of TDIRM



Advantages of TDIRM

e Data Requirement
— Production Rate History
— Well Logs

e Other data can be used to refine the model
— Core data
— Well Test
— Pressure history
— Seismic



Advantages of TDIRM

* Development Time

— Weeks Rather than months/years
e Analysis Complexity

— Does not require a Ph.D. or extensive training
e Usage & Utility

— Alternative to conventional simulation

— Complement to conventional simulation



Advantages of TDIRM

 Technology
— Geology
— Reservoir Engineering
— Artificial Intelligence and Data Mining

e Deliverables
— Full Field Model
— Remaining Reservoirs
— Infill Locations
— Underperformer Wells



Disadvantages of TDIRM

 TDIRM is not applicable to new fields with
little production history.

e Application of TDIRM is not recommended to
fields with less than 50 wells and less than 5
vears of production history.
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e TDIRM Data Requirement



Minimum Data Requirement

 Production History

— Production rate history
— Well locations



Minimum Data Requirement

 Well Logs
— Porosity
— Formation Thicknesses (Net/Gross)
— Initial Water Saturation
— Formation tops



Other Data

* Following data can be used in the TDIRM
— Geological Interpretations
— Core data, Core Analysis
— Well Tests
— Pressure data
— Seismic data



Top-Down, Intelligent Reservoir
Modeling

* |In top-down modeling we start from
production data and try to deduce a picture of
fluid flow in the reservaoir.

* Once the picture is formed (and validated) it is
used in order to plan for the future and make
strategies for field development.
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 Development Steps
— Single-well Modeling (calssic Reservoir Eng.)
— Fuzzy Pattern Recognition
— Predictive Modelind



Field Information

e Well locations.
e Cartesian Grid.

e Outer boundary
(structure map).

e Estimated
Ultimate
Drainage Area
(EUDA) using
Voronoi cells.




Field Information

e Using geo-statistics (kriging, co-kriging and/or
Sequential Gaussian Simulation - SGS) the
Cartesian grid is populated with well-
based data. ‘g

e Thickness, Porosity, Saturation, ’a
etc. ‘3‘
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Grid Association

e Each Voronoi (EUDA) cell include multiple
Cartesian grids.

* Well-based characteristics are averaged over
entire Voronoi (EUDA) cell.



Production Data Analysis

e Starting with Production data
— Decline Curve Analysis
— Type Curve Matching

e Removing Subjectivity & making the analysis repeatable.

— History Matching
* Single Well Radial numerical simulation

— Volumetric Reserve Calculation
— Recovery Factor Estimation



Data Collected and Generated

e Spatio-temporal Data Collected (generated):
— 150 wells - 150
— Location, Lat., Long., Depth (£)—-450
— Porosity, Thickness, Saturations, (/- 1,350

— EUDA, RF, IGIP, (2)- 4,050
— Permeability, Fracture Half-Length, (Z)— 8,100

An Example



Data Collected and Generated

e Data Collected in Time:

— 10 Years of Monthly Production Rates, (720))—
972,000

—Qi, Di, b, (#)- 2,916,000

— 3, 6,9, Months Cum. productions and 1, 3, 5 and
10 years Cum. productions and 30 Year EUR, (&)-
23,328,000

An Example



Data Collected and Generated

e Same type of information forthe3to 5
Closest Offset Wells (impacting the production
of each well):

— In Case of 3 Closest Offset Well, (#)— 69,984,000

— In Case of 5 Closest Offset Well, () -
116,640,000

An Example



Data Collected and Generated

A small to moderate field produced more than
116,640,000 pieces of spatio-temporal data.

o A fairly large field (350 Wells) with about 20
yvears of production will generate a spatio-
temporal database with 793,800,000 pieces of
data.

Lets mine this dala in order to discover some
valuable palterns.

An Example



Fuzzy Pattern Recognition

* Objective:
— |dentify the sweet spots in the field.

— |dentify the underperformer wells.

 Sweet Spots represent:
— Remaining reserves.

— Locations for infill drilling with high probability of
success.
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Fuzzy Pattern Recognition

Field-Wide Fuzzy Pattern Recognition

Features for Analysis | Pattern Recognition

Current Zone : Entire Reservoir

. First Year Cum [mscf]-Gas
Partition Type A Avg. Yalue i Wells Z Wells
High-High 1 B83,954,556 45 1289
2 375704359 142 40.E3
. High-Low & MidMid = 295 810,800 100 2865
boicl-L o 4 211,609,288 59 1691
Low-Low 5 122 354,000 3 0.8

Total Wells 343 100




Fuzzy Pattern Recognition

Field-Wide Fuzzy Pattern Recognition

Features for Analysis | Pattern Recognition

Current Zone : Entire Reservoir

First Year Cum [mscf]-Gas

Partition Type A Avg. Yalue i Wells Z Wells
1 F83,954.556 45 1289
2 375704359 142 40.E3
. High-Low & MidMid = 295 810,800 100 2865
Mid-Lows 4 211,609,288 59 1691
Lows-Lows 5 122 354,000 3 0.8

Total Wells 343 100




Fuzzy Pattern Recognition

Features for Analysis ] Pattern Recognition

Current Zone : Entire Reservoir

1 533.954.556
2 375,704.353 142 40.63
3 235,810,500 100 28.65
Mid-Low 4 211,603.285 53 16.91
Low-Law ] 122,.354.000 3 0.26
Total Wells 343 100




Predictive Model

* Predictive models for each well are developed
based on spatio-temporal data:

— Static and dynamic properties of offset wells.

— Static and dynamic properties
of each well being modeled. _:h%\\




Calibration/Validation

e Latest drilled wells in the field can be selected
to validate the reservoir model.

Calibration /History Matching of Full Field Model - Scenario: 3Month [E

Select Calibration Wells T Set Spatial Distribution T Automatic History MatchingT Final Results

Calibration Wells
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NoofGen.: | 10 Inversion : [ 5 Calibration Set (%) : [ 10 |




Field Development Strategies

» Using the generated maps, user will identify the




Field Development Strategies
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e Results



Methodology

Permeability Single Layer Models
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Methodology

Permeability

Two-Layer Model
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Methodology

Porosity

Two-Layer Model
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Thickness Actual Porosity Distribution Actual Permeability Distribution
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IGIP Actual Porosity Distribution Actual Permeability Distribution
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Estimated Ultimate Recovery @ 45 years
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Actual Porosity Distribution Actual Permeability Distribution
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IGIP Actual Permeability Distribution

Remaining Reserves after 30 years
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Estimated Ultimate Recovery @ 45 years

= eclese EUR After 45 years of Production

N FDA

Average % error 3.74
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Predicting Behavior of Future Wells
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Model SLM 100
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e Conclusions



Conclusions

* A new alternative to conventional reservoir
simulation and modeling is presented.

e TDRIM attributes include:

— Complexity (data driven)
— Resources (time-man power- budget)
— Data Requirement

* May be used to complement existing reservoir
simulation models.



QUESTIONS?




	MohagheghPDF
	mohaghegh2.pdf
	Top-Down, Intelligent Reservoir Modeling (TDIRM)
	Outline
	Top-Down, Intelligent Reservoir Modeling (TDIRM)
	Reservoir Simulation
	Top-Down Modeling
	Outline
	Advantages of TDIRM
	Advantages of TDIRM
	Advantages of TDIRM
	Disadvantages of TDIRM
	Outline
	Minimum Data Requirement
	Minimum Data Requirement
	Other Data
	Top-Down, Intelligent Reservoir Modeling
	Outline
	Field Information
	Field Information
	Grid Association
	Slide Number 20
	Data Collected and Generated
	Data Collected and Generated
	Data Collected and Generated
	Data Collected and Generated
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Predictive Model
	Calibration/Validation
	Field Development Strategies
	Slide Number 33
	Outline
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Outline
	Conclusions
	Questions?


