Milankovitch-Controlled Paleoclimate Signal Recorded by Rock Magnetics, Lower Cretaceous Platform Carbonates of Northern Mexico*

Linda A. Hinnov¹, David Anastasio², Diana Latta², Ken Kodama², and Maya Elrick³

Search and Discovery Article #40388 (2009)
Posted February 5, 2009

*Adapted from oral presentation AAPG Convention, San Antonio, TX, April 20-23, 2008

¹Earth and Planetary Sciences, John Hopkins University, Baltimore, MD (hinnov@jhu.edu)
²Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA
³Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM

Abstract

Study of cyclic carbonate platforms relies on field observations of repeating, often cryptic, shallowing upward facies. This can be difficult when cycles are thin or lack lithologic distinction. The cyclicity typically occurs at Milankovitch time scales, and needs to be analyzed for orbital forcing. An assessment of how the signal is encoded in the rocks is integral to assessing the validity of climate proxies. The challenge is how to render measured sections into objective time series using a facies-independent physical parameter.

Here we report on anhysteretic remanent magnetism (ARM) of the lower Aptian Cupido Formation, which reveals 150 m of pervasive, non-random variations at sites from the inner and middle shelf (30 km apart). Fine-grained detrital magnetite from terrigenous sediment, possibly eolian dust, is responsible for the ARM. At both sites, ARM variations show a synchronous ~30-35 m oscillation with maxima coinciding with fourth-order sequence boundaries, superimposed by prominent high-frequency variability. Chronostratigraphy suggests that the variations reflect Milankovitch cycles. Tuning the low-frequency oscillation to a 405-kyr periodicity (long eccentricity) focuses high-frequency variability into short eccentricity, obliquity and precession bands; the precession-band signal modulates with a pronounced eccentricity signature.

The ARM signal is tightly correlated between the sites, but decoupled from interpreted fifth-order depositional cycles. ARM amplitude weakens upsection as facies record deepening conditions, likely due to a warming, humid climate, changing global circulation and/or greater dispersal of magnetite grains in the water column. The high fidelity of this ARM proxy underscores its great promise in the objective retrieval of Milankovitch cycles, and in the high-resolution stratigraphic correlation of carbonate platforms.

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.
Milankovitch-controlled paleoclimate signal recorded by rock magnetics, Lower Cretaceous platform carbonates of northern Mexico

Linda A. Hinnov -- Johns Hopkins University
David Anastasio -- Lehigh University
Diana Latta -- Lehigh University
Ken Kodama -- Lehigh University
Maya Elrick -- University of New Mexico
OUTLINE

• Analyzing cyclic carbonate platforms
 - time-honored approach: facies analysis
 - emerging approach: rock magnetics

• Cretaceous Cupido Platform, Mexico
 - geologic setting; stratigraphic framework
 - Potrero Garcia and Potrero Chico
 - cycle thickness stacking pattern

• Rock magnetism analysis
 - anhysteretic remanent magnetism (ARM)
 - ARM correlation between Garcia and Chico
 - ARM signal decoupled from depositional cycles

• Milankovitch-controlled paleoclimate signal
 - ARM signature of long-term climate change
 - record of eccentricity, obliquity and precession index

• Conclusions
• Analyzing cyclic carbonate platforms
 - time-honored approach: facies analysis

EXAMPLES OF METER-SCALE CYCLES

- **Aisha-Bibi cycles**
 Cambrian, Kazakhstan
 Bazykin & Hinnov, 2002

- **Dachstein cycles**
 Triassic, Italy
 Cozzi et al., 2005

- **Latemar cycles**
 Triassic, Italy
 Goldhammer et al., 1987

- **Cupido cycles**
 Cretaceous, Mexico
 Lehmann et al., 1998

LITHOLOGIC CLASS

1 = Subaqueous Gypsum
2 = Laminites
3 = Heterolithic Thin Beds
4 = Burrowed Wackestones
5 = Non-skeletal Packstone
• Analyzing cyclic carbonate platforms
 - emerging approach: rock magnetics

ARM
Anhysteretic Remanent Magnetization
<5\(\mu\)m ferrimagnetic minerals
Coercivities <100mT

High-resolution sampling for
better definition of cycles
and complete recovery of
signal within cycles

...lots of samples!

Fast Cheap Nondestructive!
• Cretaceous Cupido Platform, Mexico
 - geologic setting; stratigraphic framework

Coahuila Marginal Fold-Thrust Province, NE Mexico

Sierra del Fraile doubly-plunging anticlinorium

P. Chico

P. Garcia

L. Aptian

- Age:
 - Jurassic
 - Cretaceous

- Formation:
 - Parras Shale
 - Indidura
 - Cuesta del Cura
 - Aurora
 - La Peña
 - Cupido
 - Taraises
 - La Casita
 - Zuloaga
 - Minas Viejas

- Thickness:
 - 1220 m
 - 530 m
 - 85 m
 - 250 m
 - 25 m
 - 940 m
 - 490 m
 - 1070 m
 - 60 m
 - 3020+ m
• Cretaceous Cupido Platform, Mexico
 - Garcia and Chico sections

INNER SHELF:
peritidal & subtidal facies: evaporites, laminites, burrowed grain- and packstone

MIDDLE SHELF:
peritidal and subtidal facies: less frequent facies changes, more packstone, less grainstones
• Cretaceous Cupido Platform, Mexico
- cycle thickness stacking patterns

Results:

• section duration: ~3.6 myrs
• cycle durations: ~73 kyrs
• sequence durations: ~730-900 kyrs
• ~10-12 cycles per sequence
• no sustained 5:1 cycle bundling!

GARCIA

Meter scale shallowing upward cycles
“4th order” sequences

Fischer plot

* Ages from Hardenbol et al. 1998
• Rock magnetism analysis
 - anhysteretic remanent magnetism (ARM)

ARM is a measure of the concentration of ferrimagnetic minerals, is insensitive to changes in carbonate content, thus is an ideal tool for evaluating sediment cycling independent of facies.

Source of ARM signal in Cupido cycles is fine-grained magnetite.

Measurements made on the Magnetic Properties Measurement System (MPMS), Univ. of Minnesota.
- Rock magnetism analysis
 - ARM source: fine-grained detrital magnetite

SEM AND XRD ANALYSES

- Primary magnetite
- Quartz coatings
- Fine-grained
- Rare sulfides
- No magnetosomes

Magnetite grain sizes and shapes are consistent with far-traveled atmospheric dust particles
- Rock magnetism analysis
 - ARM correlation between Garcia and Chico

- Both sections overlain conformably by deep water La Peña Formation
- Garcia has consistently higher ARM values than Chico (higher dust concentration)
- Both series have same long-period variation; maxima phased with sequence boundaries

Correlation coefficient = 0.68

Garcia stratigraphic position (m)

140 120 100 80 60 40 20

-4.4 -4.8 -5.2 -5.6 -6 -6.4 -6.8

4th order sequence boundaries (Goldhammer et al., 1991)

INNER SHELF Garcia (136 m)
MIDDLE SHELF Chico (131 m)

Correlation coefficient = 0.68

Chico stratigraphic position (m)

140 118 85 56 33

La Peña Formation
- Rock magnetism analysis
 - ARM decoupled from depositional facies

Lithologic class (ranked by relative depth)

1 = Subaqueous Gypsum
2 = Laminites
3 = Heterolithic Thin Beds
4 = Thalassanoides Burrowed Wackestones
5 = Non-Skeletal Grainstones
6 = Bedded Requienids & Chronododonts
7 = Skeletal Packstones
8 = Rudistid Bioherms

Adapted from Foster (2003)
• Rock magnetism analysis
 - ARM decoupled from depositional facies

A closer look:

Adapted from Foster (2003)
• Milankovitch-controlled paleoclimate signal
 - ARM signature of long-term climate change

• Same linear decrease in sections, interpreted as decreasing dust deposition
• Global sea levels rising up-section; Cupido facies indicate progressive deepening
• Increasing humidity and/or higher sea levels explain systematic decline in dust deposition
• Both series have same long-period variation; maxima phased with sequence boundaries
Milankovitch-controlled paleoclimate signal
- record of eccentricity, obliquity and precession index

STEP 1
Set the Goldhammer sequence boundaries to 405-kyr time intervals (orbital eccentricity). Will other Milankovitch frequencies emerge?

Spectral analysis shows that 100-kyr eccentricity, obliquity, and precession band power are aligned by the tuning. Filter passband for the recovery of precession index (next step) is also shown.
• Milankovitch-controlled paleoclimate signal
 - record of eccentricity, obliquity and precession index

STEP 2

Does precession band signal have amplitude modulations demonstrating presence of orbital eccentricity? Filtered signal (upper left) subject to Hilbert transform (lower left), which has a spectrum (lower left) consistent with orbital eccentricity.
• Conclusions

SPECIFIC:
• ARM signal is synchronous between platform sites separated by ~30 km
• ARM signal is decoupled from fifth-order depositional cycles
 -suggests imperfect recording of Milankovitch-forced sea levels
• ARM amplitude weakens upsection as facies record deepening conditions
 -due to a warming, humid climate (less atmospheric dust)
 -changing global circulation (dust transported elsewhere)
 -greater dispersal of fine-grained magnetite in water column

GENERAL:
• ARM holds great promise in objective retrieval of paleoclimate signals
 -independent of host sediments/facies (carbonate)
 -proxy of highly sensitive parameter of global change (dust)
• ARM can contribute to ultra-high-resolution stratigraphic correlation
• ARM signals with high-fidelity Milankovitch frequencies can be used in construction of the Astronomical Time Scale.
References

