AVClimate Sensitivity during the Phanerozoic: Lessons for the Future*

Dana L. Royer¹

Search and Discovery Article #110115 (2009) Posted September 8, 2009

Abstract

Understanding the link between the level of atmospheric CO_2 and global surface temperature is profoundly important. Almost all estimates of climate sensitivity (typically defined as the warming caused by a CO_2 doubling) have come from studying records spanning the last ~20 kyr Most of these studies find a modal climate sensitivity of ~3 °C, with a long probability tail at the high end. These studies have been vital for informing climate change issues, but a limitation is that they are calibrated to a present-day or cooler-than-present-day Earth; investigation of deep-time records (older than 2 Myr ago) are required to understand the dynamics of a globally warm Earth.

Ancient levels of CO₂ can be estimated from long-term carbon cycle models, which quantitatively track the major sources and sinks of atmospheric CO₂ over these timescales, or by proxy indicators. A synthesis of CO₂ estimates from carbon cycle models and from proxies shows a strong, first-order fit between CO₂ and geologic indicators of temperature: continental ice sheets are common when CO₂ drops below 500 ppm and absent when CO₂ exceeds 1000 ppm.

One parameter in most long-term carbon cycle models is climate sensitivity because the weathering of Ca and Mg-rich silicate rocks, which serves as a long-term sink for CO_2 , is sensitive to temperature. Thus, it is possible to estimate long-term climate sensitivity by adjusting the climate sensitivity parameter in the long-term carbon cycle models until the model estimates of CO_2 best match the independent proxy estimates of CO_2 . Over the past 420 Myr, the modal climate sensitivity is ~3 °C; a sensitivity of < 1.5 °C is highly improbable, while sensitivities of 6+ °C cannot be excluded. Deep-time climate sensitivity thus matches the present-day, despite the two approaches capturing fundamentally different carbon cycle processes; a climate sensitivity of around 3 °C appears to be a robust feature of the Earth system, independent of temporal scaling. The geologic record generally supports a positive link between CO_2 and temperature, and we should expect a climate sensitivity of 3 °C or more in the near future.

References

Berner, R.A., 2003, The long-term carbon cycle, fossil fuels and atmospheric composition: Nature, v. 426, p. 323-326.

Berner, R.A., 1999, A new look at the long-term carbon cycle: GSA Today, v. 9/11, p. 1-6.

 $Copyright @ AAPG. Serial\ rights\ given\ by\ author.\ For\ all\ other\ rights\ contact\ author\ directly.$

^{*}Adapted from oral presentation at AAPG Annual Convention, Denver, Colorado, June 7-10, 2009

¹Department of earth and Environmental Sciences, Wesleyan University, Middletown, CT (<u>droyer@wesleyan.edu</u>)

Kump, L.R., J.F. Kasting, R.G. Crane, 2004, The Earth system, 2 edition, 419 p.

Prokoph, A., G.A. Shields, and J. Veizer, 2008, Compilation and time-series analysis of marine carbonate d18O, d13C, 87Sr/86Sr and d34S databases through Earth history: Earth Science Reviews, v. 87, p. 113-134.

Royer, D.L, R.A. Berner, and J. Park, 2007, Climate sensitivity constrained by CO2 concentrations over the past 420 million years: Nature, v.446, p. 530-532.

Royer, D.L., 2006, CO₂-forced climate thresholds during the Phanerozoic: Geochim. Cosmochim. Acta v. 70/23, p. 5665–5675.

Royer, D.L., R.A. Berner, I.P. Montanez, N.J. Tabor, D.J. Beerling, 2004, CO₂ as a primary driver of Phanerozoic climate: GSA Today, v. 14/3, p. 4-10.

Climate sensitivity during the Phanerozoic: lessons for the future

Short-term carbon cycle (<10,000 yr)

Sources: Center for climatic research, institute for environmental studies, university of Wisconsin et Madisor, Olamagan university college in Canada, Department of geography, Wold Welch, Nevember-December 1996; Climate change 1999, The science of climate change, combiscion of working group 1 for the second selection of the information of contract change. LIMPS and Wiscondoc Calenthias create subversity. 1996.

Long-term carbon cycle (>100,000 yr) Volcanic Conversion of CO2 to dissolved HCO3- by CO2 Ca-Mg silicate weathering CO2 from sedimentary organic C weathering CaCO₃ CO2 and CH4 from Burial Metamorphism & Org C Deep Diagenesis Burial

Subduction of CaCO₃ & Organic C

Weathering of organic carbon

Long-term carbon cycle (>100,000 yr) Volcanic Conversion of CO2 to dissolved HCO3- by CO2 Ca-Mg silicate weathering CO2 from sedimentary organic C weathering CaCO₃ CO2 and CH4 from Burial Metamorphism & Org C Deep Diagenesis Burial

Subduction of CaCO₃ & Organic C

Burial of organic carbon

Phanerozoic record of CO₂ Time (Ma) 500 400 300 200 100 OSD Carb P K Tr Pg g 4000 Paleosols (n=206) • Stomata (n=171) △ Phytoplankton (n=184) △ Boron (n=35) 3000 O Liverworts (n=13) CO₂ (ppm) ▲ Sodium carbonates (n=2) 2000 1000 0 Sampling frequency n = 611 80 40 updated from Royer (2006, Geochim. Cosmochim. Acta 0

200

100

70: 2565-2575)

S D

400

300 Time (Ma)

500

Geologic constraints on climate sensitivity $\Delta T(2x) = 1.5^{\circ}C$

Geologic constraints on climate sensitivity

Royer et al. (2007 Nature 446: 530-532)

Geologic constraints on climate sensitivity

Royer et al. (2007 Nature 446: 530-532)

Geologic constraints on climate sensitivity

Royer et al. (2007 Nature 446: 530-532)

Presenter's Notes: Residual variance: thick blue line = standard run; thin black line = varying the four factors simultaneously Where to next—time slices through time (do icy times have a higher DT(2x)?)

Summary

- There is a strong CO₂-temperature coupling for much of the Phanerozoic. There is a threshold for nucleating ice sheets at the equivalent radiative forcing of ~500 ppmv (adjusted for changing luminosity through time). Above this CO₂ threshold, large continental ice sheets are typically absent.
- A model-data comparison for paleo-CO₂ indicates an average climate sensitivity of ~3 °C throughout the Phanerozoic; this calculated sensitivity is similar to calculations for the present-day, implying that an ~3 °C sensitivity is a robust feature of the Earth system.

Phanerozoic δ^{18} O shallow marine carbonate record 0 Marine carbonate 818O (% PDB) -8 10 m.y. bins ■:1 std. dev. linear fit: $r^2 = 0.78$ -12 600 Sampling frequency n = 4824low latitude sites 400 200 600 500 400 300 200 100

Time (Ma)

