AVK-Ar Dating of Authigenic lllites: Integrating Diagenetic History of the Mesaverde Group, Piceance Basin,
NW Colorado*

Trevor Stroker* and Nick Harris?

Search and Discovery Article #110107 (2009)
Posted July 30, 2009

'Geology and Geological Engineering, Colorado School of Mines, Golden, CO; currently Anadarko Petroleum Corporation (trevor.stroker@anadarko.com)
’Geology and Geological Engineering, Colorado School of Mines, Golden, CO (nbharris@mines.edu)

*Adapted from oral presentation at AAPG Annual Convention, Denver, Colorado, June 7-10, 2009
Abstract

Tight gas sands represent a significant portion of the U.S. domestic petroleum reserves. The ability to date diagenetic reactions that
significantly influence reservoir quality will enhance our ability to characterize and produce these fields. Though diagenetic clays form
only a small percent of the sandstone, they have a disproportionately large impact on reservoir properties because of their high surface-
to-volume ratio. Using thin-section petrographic analysis, X-ray diffraction, scanning electron microscopy, and K-Ar dating, systematic
trends in feldspar alteration, and illitization can be seen in the fluvial section of the Williams Fork Formation (upper Mesaverde),
Piceance Basin, Colorado.

Samples taken from wells in Rulison and Parachute fields between 4500 to 7000 feet below surface were investigated for whole rock
mineralogy and also treated to isolate the clay- sized fraction (<1um). Illite from the extracted clays provide K-Ar ages for fifteen
samples, revealing a linear increase in age from approximately 37 Ma to 55 Ma with depth. These ages incorporate two different types
of diagenetic illite. The largest constituent, as determined by SEM microscopy, is a highly illitized, pore-lining, mixed layer
illite/smectite; smaller quantities of later stage, pore-filling fibrous illite are also present. Samples with relatively high concentrations of
fibrous pore-filling illite compared to MLIS exhibit age dates 4-7 Ma younger than those of the same depth with little to no fibrous
pore-filling illite, corroborating the relative age relationship between the two illite polytypes based on petrographic observations.

The illite age dates correspond to entry into the calculated 100°C window during initial burial as determined by Crossey and Larsen
(1992) and Johnson and Nuccio (1983). This temperature regime is often associated with a transition to highly ordered MLIS from
early smectite (Lee, 1989) with water released from smectite creating overpressure conditions and aiding in the generation of
hydrocarbons in nearby organic-rich stratum (Ko and Hesse, 1998). Ages recorded by illite K-Ar dating are approximately 20 Ma
younger and correspond to a depth 4000 feet shallower than the maximum burial for the fluvial interval of the Williams Fork
Formation, possibly indicating a mechanism for early over-pressurization and fracturing of this interval.
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Diagenetic Influences on Reservoir Properties
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Presenter’s Notes: The Maatrichtian Interior Seaway deposited the laterally extensive Mancos Shale above the Dakota formation, forming the base interval of
hydrocarbon significant Mesaverde strata in the basin (figure 2). A regressive sequence of coastal deltaic sandstones, sourced from the Sevier Orogenic Belt,
establish the Corcoran, Cozzette, and Rollins intervals of the lles formation. The base of the Williams Fork is a coastal plain with meandering streams and the wide-
ranging Cameo Coal. Moving up section, the Williams Fork becomes increasingly terrestrial with meandering and braided stream channels creating isolated lenticular
sand bodies surrounded by shale. The Price Coal or “UMV” Shale forms a laterally extensive marker and is generally associated with the top of gas saturation in the
Williams Fork (figure 3). Paleocene and Eocene age strata overlying the Mesa Verde are sourced from uplifts on the eastern edge of the basin and generally not
considered economic in the Rulison area.



Burial history profile
MWX wells — Rulison Field

0

1000_: Eocens Sed Bot

300d MM marine-no
5000]

Maximum Burial
and Gas Generation
!

7000

9000}

11,000] - ruw&&

Erosion

Depth (ft)]

30




Generalized diagenetic sequence for the
Williams Fork Formation

Early Late Post H.C.
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Presenter’s Notes: So why is this important, there are two places that this material can



General Lithology

Porosity % | Permability md

(at 1200 psi) | (at 1200 psi) Modified from
4.6 0.0061 Folk, 1980.
7.2 0.0061
6.3 0.0069
7.7 0.0071
6.9 0.020
6.9 0.028
11.6 0.010
12.9 0.042

Interval
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lllite polytypes found in the samples
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Two Stages of lllite Growth

1. Early, pore-lining MLIS

2. Later, pore-filling, fibrous illite




Influence of diagenetic alterations on porosity/permeability

Kozeny Carman Equation:

. 03 K = permeability, ® = porosity
K = CS2(1-02) C = tortuosity
S, = surface area per unit volume of solid phase
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Influence of different clay types

Core Permeability (darcy)
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Porosity vs. Permeability

Porosity and Permeability vs. Depth
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Primary vs. Secondary porosity

Change in dominant porosity “type” with Depth
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Intergranular Cement

Quartz and Carbonate Cement Increases with Depth
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Feldspar Dissolution

Feldspar Decreases with Depth
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What Happened to the K-Feldspar?

* KAISi;Oq e eraspan* % H* =
% K* + % KALSi;0,6(OH), iie) + 2 SIO

2 (aq)
4.5 K+ + 8 Al*3 + smectite—> illite + Na,Ca,Mg,Fe,Si

4 K* + 1.6 smectite-> illite + Na,Ca,Mg,Fe,Si

K-feldspar Fib. Illite Chlorite wt
wi% wi% Yo

S8 Shale | SS | Shale SS | Shale

Upper
fluvial 4.9 232 34 18.4
Lower
fluvial 0.1 { 2.2 14.7

4.9

0.3




Clay Extraction and K-Ar Dating

[ [1 [ ] |

Various peaks from Quartz, Feldspars, Carbonates and Clays

‘Whole Rock
K-Feldspar

L\WM' ,1‘ }f L‘M"“r W«« M"irl’ u&f’if-h ’Tu,&-_

Il 003

- l

"

"™ lliite 001 | Final Clay Extract
f ]

"

ine |
ood |
Hlite 004

\\-A.«-n‘" ﬁw«“k _.-,.»‘ 5,




K-Ar Age Dating Results
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Burial history profile
MWX wells — Rulison Field
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Clay Extract — age of fibrous illite component
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Fluid Movement Along Fractures
(Driven by Gas Charge)

MWX #1 at 5755’
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Fluid Movement Along Fractures
(Driven by Gas Charge)

chematic Mesaverde Section during Gas Migration Wi% fibrous illite
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Diagenetic Influences on Reservoir Properties

Grain Coating Clay (chlorite, illite) - increased porosity and permeability

Core Permeability (darcy)
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Presenter’s Notes: So why is this important, there are two places that this material can
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Conclusions

* Primary porosity decreases with depth, while secondary porosity increases.
Result: total porosity is essentially constant with respect to depth.

» Permeability decreases because porosity becomes more disconnected as
intergranular pore space is filled with cement.

*K-Ar dates indicate:
1. smectite illitization occurred during early burial in response to thermal
alteration
2. significant fibrous illite emplacement occurred concurrent with maximum
gas generation in the Williams Fork.

* Authigenic clays have significant influence on reservoir properties
« Pore-filling fibrous illite = decreased permeability
* Grain-coating chlorite/illite = higher porosity/permeability
* Petrophysics intended to characterize clays is useful in these sandstones
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