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Abstract

Studies of core and logs through the Barnett Shale in Pecos County in the southern part of the Delaware Basin have allowed us to compare
the lithofacies and depositional environment of the Mississippian in this area with that in the Fort Worth Basin. Overall, mudrock facies
are similar although, in contrast, the studied core contains no skeletal debris layers. Limestone concretions were not seen, but there is
substantial dolomite in many horizons. Total clay contents are broadly similar. There is more bioturbation than in the Fort Worth Basin.
Agglutinated foraminifera, Tasmanites, radiolarians, conodonts and echinoid spines are present. The transition zone between the Barnett
and the Woodford Formation is a chert rather than a carbonate, as reported in the northern part of the Delaware Basin. This transition zone
is regionally referred to as the "Mississippian Limestone™. Recognizing this, we made cross-sections, isopach maps, and structure maps
based on well-log correlations penetrating the Barnett Shale in Pecos, Reeves, Culberson, and Hudspeth counties. We then use published
methods to calculate organic richness from wireline logs. We built a 1-D burial history of the cored well using “Genesis” software,
making use of vitrinite reflectance data. Constructing the burial history is crucial for being able to track likely diagenetic changes in the
shale with time. These diagenetic changes in turn control hydrocarbon generation, overpressuring, natural fracturing, petrology and
petrophysics, and present-day mechanical rock properties, all of which are important factors in determining whether Barnett Shale gas in
the Delaware Basin will be economic.
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Motivation

- Prolific gas production from Barnett
Shale in FWB

= Operators investigating Barnett in
Delaware Basin

« Very little published geological data
about Delaware Basin

» Geological characterization key for
identifying gas sweet spots
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» Lithofacies ldentification of Barnett Shale

in Delaware Basin

Presenter’s Notes: In this study, we recognize three general lithofacies on the basis of mineralogy, fabric, biota, and texture:
Can we say Barnett Shale at Delaware basin is true Shale or siliceous mudstone?
(Shale is defined as having fissility (Folk, 1980)



Laminated Mudrock Facies

laminated mudrock fabric with silt layers at
the bottom of the section

| (a). Layer fruncation and asymmetry could be caused by currents)

(b). Dolomite rhombs (D) commenly with organic (c). Flatiened Tasmanites (T) and dolomite rhomb
centers. Timing is unclear: Some grow over the m overgrowing detrital quartz. Fabric wraps around
foliation, others are wrapped by it. - lower part of rhomb.




Micro-Laminated Mudrock Facies

124335h

fery thick thin section of
ompacted laminated mudrock

Fossils are mostly flattened (F) but some
(at right) have retained their shape

Fossils are flattened as a result of
compaction.




Unlaminated Mudrock Facies

12, 573.1 ft

Unlaminated mudrock with agglutinated
forams and conodonts




12,618 1t

Cﬁm plex layering

s %

[Echinoid spines replaced by pyrite with calcite
in the center. Both longitudinal and cross
[sections.

Argillaceous mudrock facies

Forams (F),
radiolarians (R),
detrital quartz silt (d)
and dolomite rhombs
in argillaceous
matrix.

| e X
Layering at high angle to flattening
fabric.




Layers of pyrite and carbonate are overlain by siliceous mudrock. At the boundary a layer of pyrite
with phosphate nodules is present. The layers are deformed and truncated.




Pyrite Framboids
* Pyrite occurs as framboids, which is the key to

-Understanding the water column chemistry in
cient strata

- identifying the depositional environment

« Pyrite framboid size: 1-18 pm (mean 5 ym ) formed
in a euxinic water column (Wilkins et al, 1997)

»1-50 pm (mean 10 ym ): formed in an oxic
environment (Wilkins et al, 1997; Black Sea)

» The most dominant framboid size of Barnett Shal
in FWB is (~1 pm ) (Loucks and Ruppel, 2007

, DAY

Large and
small pyrite
framboids

Reed etal.,, 2009

Presenter’s Notes: Wilkin et al., (1996) stated that pyrite framboid size distribution may be used to indicate whether fine-grained sedimentary
rocks were deposited in an anoxic or an oxic environment.

Pyrite occurs in all intervals of the Barnett Shale in the RTC#1 core and also occur as framboids, which is the key to identifying the depositional
environment.

Pyrite framboids have been cited as a key to understanding water-column chemistry in ancient strata (Wilkin et al., 1996, 1997; Hawkins and
Rimmer, 2002; Bond et al., 2004).



Depositional Environment

Shallow-water
shelf Shallow

 The RTC#1 rocks are from a
more distal basin setting, with

underlying deep-water cherts.
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Presenter’s Notes: The presence of these biota (agglutinated foraminifera, gastropods, brachiopods, bryozoans, and sponges), in the deep basin
setting might indicate downslope transportation.

Possible burrows occur in some intervals of the RTC#1 core. These were possibly formed by organisms transported from the shelf to the basin
along with sediment. These organisms would have lived for a short time creating bioturbation and then died out due to the anoxic environment.
Another interpretation: the basin is turning over, creating an oxygenated environment for organisms to live for a period of time when the oxygen is
available. These organisms would then die out when the environment becomes anaerobic.
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RTC#1 Well is located in the distal p: oxygen

minimum and storm wave base.

1 Gutschick and Sandberg (1983

Presenter’s Notes: the southern part of the Delaware Basin where the RTC#1 well is located is in the deepest part of the basin where the water
depth is greater than 600 ft



Key differences between the Barnett

Shale in Delaware Basin and F\WB




Comparison

There are no coarse skeletal debris layers

More bioturbation (Basin turning over might explain the presence of
bioturbation)

Depths range from 7000 ft to 18,000 ft in Delaware Basin, but ~3000
ft to 8000 ft in FWB

The average TOC is 2.90 %, but in FWB is 3.9% -4%

Different sizes of pyrite framboids * Very low to no calcite content

Gas content ranges between 100-145 scf/ton in Delaware Basin, but it
190-529 scf/ton in FWB (Jarvie, 2009)

Variation in the TOC content, which might be explained as a difference
in (1) O.M. input to the water column; (2) O.M. preservation in the
sediments

Presenter’s Notes: Depths range from 7,000 ft (2133 m) along the western edge of the Delaware Basin to 18,000 ft (5486 m) along the basin axis.
However, depths to the Barnett Shale within the FWB are shallow and start from approximately 3000 ft and reach 8000 ft at most.

The average TOC, based on 177 samples for the RTC#1 core, is 2.90 %. This is lower than the average TOC at the FWB.

plotting the ratio of Titanium / Aluminum (Ti/Al) versus depth can give an idea about the sediment source and whether it comes from one or more
different sources.

the preservation of organic matter in sediments might be changeable through time. This could be determined from the organic matter production
rate which shows high nitrogen contents on the total nitrogen isotope scale.



=/ RTC#L Well

The transition zone
is commonly chert
at the location of
the RTC#1 well

[Trapsition zos

Presenter’s Notes: GR and acoustic logs show the transition zone between the Barnett shale and Woodford Formation is a mix of carbonate and
chert. The chert has the same signal as in the RTC #1 well and the carbonate has a low reading in the GR log. After examining the thin sections,
this carbonate is identified as a dolomite.
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Cross section BB’ through RTC#1 where the transition zone between the

Barnett Shale and Woodford Formation is interpreted as chert.



Hamen Regan #1 Resves County, TX
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The transition zone is a
mix of chert and lime in
different parts of the
basin
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Mississippian Chert

Woodford Shale

Cross section FF' across the Pecos County where the transition zone
between the Barnett Shale and Woodford Formation is a mix of

Mississippian chert and Mississippian lime.

Presenter’s Notes: Chert is an early diagenetic product. This mixed zone of Lime and Chert is probably caused by pressure dissolution
that caused the chert to replace the lime.



Transition zone
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Transition zone (Hamon Regan)

Probably this
dolomite is a
diagenetic
product or it
might be
generated from
an anerobic
oxidation of
organic matter.

Stylolites resulted from compaction and
pressure dissolution which may have
provided a source of silica for chert to
replace the dolomite in the transition zone.

Dolomite

0. 4gmm|
——

Presenter’s Notes: Some dolomite rhombs have organic centers suggesting that they nucleated on organic matter and were probably an early
diagenetic product. It is difficult to tell which mineral replaces which.

There is no evidence for calcite at this interval. Instead, many ferrous carbonate clasts are dominant.

It is hard to point what is the background matrix at this zone



@ mssp Lime
() MSSP Chart

@ Both lime and chert

Location map showing the distribution of the Mississippian wells that are rich in lime, chert, and
mix of lime and chert

Presenter’s Notes: Location map showing the distribution of the Mississippian wells that are rich in Lime, chert, and mix of Lime and chert.



Map showing the distribution of chert, lime, and mixed chert/lime wells

Interpretation:

e This zone has
undergone diagenetic
processes that caused
extensive rock
replacement as a result of
burial depth.

* The limestone was
generated on the shelf,
eroded, and then was
transported to the basin
to mix with the chert
that was formed in the
basin. A replacement
process between the
chert and the limestone
then began.

Presenter’s Notes: The presence of stylolites in the Hamon Regan #1 well could be a result of compaction and pressure dissolution, where
fluids rich in silica might have been transported to replace the carbonate in the transition zone. Based on the scope of this study it is difficult
to tell which rock was formed first.



Calculation of the Gas content for the

Barnett Shale in Delaware Basin




Calculation of Barnett Shale Gas Content

Methodology

River carry the sediments Free Oxygen Zone

* Back to the basin 5 "phatosynthetic zone”

calculation for
the original
TOC

Bacteria is feeding on
the soluble part of O.M.
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Kerogen type

Assumptlon Delta Carbon 13 2 Tissot and Welte, 1978). B ___
- The higher the £ =
peak of 6C13,
the higher the
rank of kerogen
type (more
aromatic)

Cataginesiy

Core Depth (ft)

~ 14% type | ker
2 81% type Il kerogen an
e sl 5% type 1l kerogen

Presenter’s Notes: It is not possible to differentiate between the kerogen types when the samples are thermally mature and are located in the
gas window.

Variation in the TOC values with depth is largely consistent with the variation in the & C13 for the RTC#1 well.

As the type of kerogen increases, the kerogen structure becomes more aromatic, which gives a higher value on the 5C13 scale.

For example, type (l) kerogen is more aliphatic rich, which gives lower 8C13 peak; type (Il) kerogen has an increase in the aromatic benzene
rings, which give higher reading than type (1) in the 5C13 scale and so on for type Il and type VI.



Equations

(Jarvie, 2007)

HI,q (1200 — HI, (1 - PL,)]
HI, [1200 — Hlg (1 — PLg)]

TRy = 1 (2)
K= TRy, * Cq
%Ez = 15% HI 4 ("'“"%ﬂ‘) (8333)
Type 111=0% TOC, = pd \THE ’

3)

= {I fl, (1 TRy)(83.33 - (%f))] - [mpd (%13)]

S,0= (HIgX TOCp)/ 100 =» (4) (Ruble, 2009) (4)
Gas yield = (S,0) - (S,,) = (5)

Presenter’s Notes:

TR HI= the fractional conversion derived from original hydrogen index

Hlo= Original Hydrogen Index

Hlpd= Present day Hydrogen Index

Cp, = the residual carbon at high maturity

Plo= Original Production Index

Plpd= Present day production Index (the ratio of S1 to S1 + S2 from Rock- Eval data) Pl=(S1/(S1+S2)

1200= a constant value; maximum amount of hydrocarbons that could be formed assuming 83.33% carbon in the hydrocarbons



Core Depth (1)
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Calculation of Barnett Shale Gas Content
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 Gas content of the RTC#1 is
estimated to be 110.64 scf/ton
based on calculating the original
TOC and hydrocarbon potential

15

* 90% of the generated
hydrocarbon left the system




Organic Richness from Wireline Logs




Methodology

» Method based on overlay of deep
resistivity log with sonic log.

1) Matching overlay in immature source
rock.

2) Separation between the two logs is an
indication of source-rock organic matter.

« Neutron and Density logs can be used if
B borehole is in good condition.

N - = Passey et.
18l ; ; ; al., (1990)

ALog R =log 10=(R/R paseiine) + 0.02* (At- At paseiine) “ SONIC”

TOC=ALog R * 10 (2:287-0.1688" LOM) ALog Ryey =109 19(RIR pseine) + 4 ( ON- ON i) “Neutron”

ALog Rpe, = log 10(R/R baseline) -2.50 * (Py. ppaseine) “ DENSity”

Presenter’s Notes:

A log R= the separation of sonic/resistivity curves,

R baseline = the resistivity matching to the At baseline, when the sonic and resistivity curves overlay in non source rock interval
0.02 = the ratio of sonic/resistivity scale (50 pusec/ft per one resistivity cycle)

2.297 & 0.1688 = parameters are determined empirically in clay rich rock by Passey et al., (1990).

The At baseline is constant along the entire well; however, the R baseline is changeable in order to baseline the two curves.



Level Of Maturity (LOM)
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Apparent variation in maturity arises because the shale is
heterogeneous and the kerogen is a mixture of types I, Il, and I,
which may suggest different depositional environments.
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High Thermal Maturity of Examined Samples
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Presenter’s Notes: Plot of photoelectric factor (PEF), sonic delta transit time and caliper. The high peaks of the PEF refer to the solid particles
associated with the sediments, which are most likely organic matter. Caliper logs should be used with PEF in order to separate between the
washout areas and the organic matter layers. Solid organic matter should give high delta transit time; therefore At log should be used with the PEF
to identify this organic matter.
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Conclusions

High organic content, laminae, small pyrite framboids suggest
anoxic conditions

RTC#1 well is located in the distal part of basin, where water
depth is below oxygen minimum and storm wave base

The short depositional events of oxygenated sediments

transported from more proximal setting

Cherts in transition zone indicate deep-water distal setting

The mix of Mississippian Lime and Chert between the Barnett
Shale and Woodford Formation probably suggests a diagenetic
process that causes chert to replace the carbonate by the process
of pressure-dissolution




Conclusions

= Back calculating for the original TOC and hydrocarbon potential
helped in estimating the gas content for the Barnett Shale at the
location of RTC#1 well

Estimating the TOC from wireline logs is not an accurate method
to apply for the Barnett Shale because it has a mix of different
kerogen types. However, it is a good tool to use in order to know

the location of O.M.-rich intervals.

Barnett Shale in Delaware Basin has potential as a gas play but it
is deeper than in the FWB — wells more expensive
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1-D Burial Model for the Delaware Basin at
the location of the RTC#1 well




Burial History Model for Delaware Basin at the location of the RTC#1 well
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New revised burial history
for the Delaware Basin at the
location of RTC#1 (modified

from Sinclair 2007)

Note temps are in centigrade (200°F = 90°C)




Lithological column created in Genesis 4.8 for RTC#1




Location map showing the Delaware Basin wells that have similar lithology
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