DISCOVERY THINKING A NEW EXPLORATION MODEL FOR STRATIGRAPHIC TRAPS, 1950's

by Robert J. Weimer Consulting Geologist AAPG, June 8, 2009

OUTLINE of TOPICS

- STRATIGRAPHIC CODES
- NEW EXPLORATION MODEL
 - ANALOGUES
 - SAN JUAN BASIN
 - API PROJECT 51 SHORELINE SS.
- WAMSUTTER ARCH PLAY
 - GEOLOGY SURFACE & SUBSURFACE
 - LAND WORK
 - SELLING THE DEAL
 - DISCOVERIES
- SUMMARY -- LESSONS LEARNED

1933 STRATIGRAPHIC CODE

FORMATION*

EMPHASIS ON SURFACE GEOLOGIC MAPPING, ROCK DESCRIPTION AND VERTICAL ACCUMULATIONS

PROMOTES LAYER CAKE GEOLOGY

SCHENCK & MULLER ARTICLE -- 1941

DUAL CLASSIFICATION

1. 2.

TIME TIME-ROCK ROCK

ERA

PERIOD ------ SYSTEM
EPOCH ------ STAGE*
ZONE GROUP
FORMATION*

- INTEGRATES FACIES ANALYSIS:
 - DEF. LOCAL LITHOLOGIC OR BIOLOGIC ASPECT OF TIME-ROCK UNIT
- RECOGNITION OF TWO TYPES OF SURFACES: TIME AND FORMATION BOUNDARIES

^{* 1961 &}amp; LATER CODES FOLLOW ABOVE SCHEME

PATRICK DRAW FIELD, WYOMING

DISCOVERY: 1959

OIL IN PLACE: 250 MILLION BBLS

STRATIGRAPHIC AND STRUCTURAL TRAP; EAST FLANK OF UPLIFT

LENGTH: 8 MILES

WIDTH: 3 MILES

PRODUCING DEPTHS: 3500-6500 FEET

NET PAY: 20 FEET

POROSITY: 20% PERMEABILITY: 36 MD

WATER SATURATION: 30-50%

ENVIRONMENT OF DEPOSITION:
MARINE SHORELINE SANDSTONE

SUMMARY OF CONCEPTS IN 1950's EXPLORATION

- K SHORELINE MOVEMENT WAS SPASMODIC
- STEPS IN THE SHORELINE SANDS FORM:
 - LINEAR BARRIER BAR RESERVOIR TRENDS
 - STRATIGRAPHIC TRAPS WHERE BARRIER BARS ARE ENCLOSED BY SHALES
- ANALOGIES OF PRODUCING TO NON-PRODUCING AREAS

- MAJOR STRUCTURAL ARCHES AS FAVORABLE EXPLORATION AREAS W/ REASONABLE Ø DEPTHS
- LAND AVAILABILITY AND MARKET OUTLETS ESSENTIAL TO DISCOVERIES
- FAVORABLE GOVERNMENT POLICIES
- ALWAYS HOPE FOR SURPRISES:
 - LARGER PRODUCING AREA THAN ENVISIONED
 - OIL INSTEAD OF GAS

ATTRIBUTES FOR SUCCESSFUL PLAYS

- BE INNOVATIVE & CREATIVE
- CONTINUALLY INTEGRATE NEW INFORMATION INTO DATA BASE -- SEARCH FOR GUIDE POSTS
 - CHALLENGE DOGMA
 - NEW IDEAS ARE THE FUEL FOR EXPLORATION
- USE DISCOVERIES FOR COMPETITIVE ADVANTAGE

ACCEPT HIGHER RISK IN VENTURES FOR BIGGER PAY-OFF

ADOPT NEW TOOLS AND APPROACHES

HAVE LUCK

(LUCK IS GEOLOGIC FACTORS UNKNOWN AT START OF DRILLING)

SUMMARY OF BASIN CENTER FIELDS

- SOURCE ROCKS
- GENERATION MATURATION
- MIGRATION
- TRAPS
 - SANDSTONE RESERVOIRS
 - FLUIDS & PRESSURES
- SEALS
 - TIMING
- WHAT HAS BEEN PRODUCED?
- WHAT IS LEFT?
- OBJECTIVE

References

Hollenshead, C.T., and R.L. Pritchard, 1961, Geometry of producing Mesaverde sandstones, San Juan Basin, *in* Geometry of Sandstone Bodies: AAPG special publication, p. 98-118.

Schenck, H.G., and S.W. Muller, 1941, Stratigraphic terminology: GSA Bulletin, v. 52, p. 1419-1426.

Sears, J. D., C.B. Hunt, and T.A. Hendricks, 1941, Transgressive and regressive Cretaceous deposits in the southern San Juan Basin, New Mexico: U. S. Geol. Survey Prof. Paper 193f, p. 101-119.

Weimer, R.J., 1960, Cretaceous stratigraphy, Rocky Mountain Area: AAPG Bulletin, v. 44, p. 1-20.

Weimer, R.J., 1966, Time-stratigraphic analysis and petroleum accumulations Patrick Draw field, Sweetwater County, Wyoming: AAPG Bulletin, v. 50, p. 2150-2175.