Supra-Salt Stacked Condensed Sections (SCS): Potential Indicators of Subsalt Stratigraphy*

Dwight "Clint" Moore¹, Frank C. Snyder², and Stefan "Steve" Rutkowski³

Search and Discovery Article #60020 (2009) Posted March 23, 2009

Abstract

The development and understanding of allochthonous salt sheets has been the focus of intense scientific (McGuinness and Hossack, 1993, and others) and economic (Moore and Brooks, 1995) interest in recent years. Concurrently enhanced techniques in biostratigraphic analysis have advanced the comprehension of depositional and structural interaction to a level of greater precision. Depositional sequences of clastic sediments can be identified by the occurrence of bioevents and abundance patterns (Armentrout and Clement[1990] and others) in microfossil assemblages. Recognition and correlation of these patterns can be translated into useful techniques of subsalt stratigraphic prediction.

Reservoir prediction is a critically important component of subsalt petroleum exploration. It is dependent upon paleoenvironments of deposition, structural development (both pre- and post-salt sheet emplacement), and the impact of salt movement upon sediment transport fairways. This interaction of salt tectonism and sedimentation creates complex systems of potential subsalt hydrocarbon traps.

Over thirty wells have now penetrated allochthonous salt sheets on the offshore Louisiana and Texas continental shelf and slope and have encountered significant thicknesses of subsalt sedimentary section (Moore and Brooks, 1995). In addition, several hundred wells have been drilled into the tops of these sheets, yielding not only useful salt sheet well control, but also delineating useful stratigraphic information which can be used to interpret salt mechanics and subsalt stratigraphy. Most of these wells contain non-condensed normal sedimentary sections deposited during the evacuation of the salt after sheet emplacement. These sections are often expanded intervals associated with large regional listric faults and have been laterally displaced over significant distances on a decollement surface along the top of the sheet. However, in upwards of forty of these salt top wellbores, multiple condensed sections, stacked conformably in thin sequences on top of each other, are encountered in various thicknesses above the salt. Each of these condensed sections represents a time period of slow sediment accumulation marking an extended period of hemipelagic sedimentation. It is important to realize the significant time period represented by these thin stratigraphic intervals. Often four or five of these condensed sections, representing approximately 2-3 million years (Paleo Data, 1992), are encountered stacked on top of each other above the top of salt, and they represent a period of minimal clastic deposition. These intervals can be termed as stacked or mega-condensed sections, and their occurrence offers an opportunity to better understand both the suprasalt and subsalt stratigraphy. They are unique and offer an invaluable point of stratigraphic control when encountered.

Within the wells that penetrated the top of salt and subsalt wells, at least four types of supra-salt sequence occurrences are evident. They are: 1) stacked condensed sections conformably deposited upon and coupled to the salt (coupled SCS), 2) stacked condensed sections that have decoupled from, and extended along, the top of the salt (decoupled SCS) as a unit, 3) coupled or decoupled normal thicknesses of individual sequences resting

^{*}Adapted from presentation and accompanying extended abstract at GCS SEPM 16th Annual Research Conference, December, 1995, p. 195-196.

¹Anadarko Petroleum Company, Houston, Texas; current address: ION Geophysical Corporation (clint@clintmoore.com)

²Phillips Petroleum Company, Bellaire, Texas; current address: Anchorage, Alaska (<u>frank.dana.snyder@gmail.com</u>)

³Anadarko Petroleum Company, Houston, Texas

conformably upon the salt, and 4) coupled or decoupled normal sequences that are significantly younger than the surrounding salt flank intervals, suggesting subaqueous erosion, non-deposition, or overthrusting.

Thus, three scenarios exist for the age relationship between supra-and subsalt sediments. First, a large sedimentary time gap may be present. This most often occurs along the updip edge of salt sheets where a large listric fault system formed above the salt. Second, the section can be conformable with little apparent missing section. Third, a prominent repeated section can occur when a stacked condensed section is present above the salt sheet. These repeated sections are of primary interest in understanding subsalt stratigraphy.

The most notable repeated sections occur in the publicly released South Marsh Island 200 #1 and Vermilion 356 #1 wells, but several other unreleased wells have also encountered repeated section (McGuinness and Hossack, 1993). All of these wells encountered stacked, condensed sections above salt and then penetrated subsalt time equivalent sediments that were from five to ten times as thick as the supra-salt sediments. In each of these two released wellbores, at least one of the repeated subsalt sedimentary sequences contained thick reservoir quality sandstone.

McGuinness and Hossack (1993) concluded that repeat sections demonstrated the extrusive glacier model of sheet development. They stated that these sediments can only be translated laterally with the sheet as it lengthens and they could not be preserved during sill-styled injection. These initial supra-salt sediments are deposited on sheet inflated highs, which minimizes the deposition of significant sediment thicknesses above the salt.

This is evidenced in models of supra-salt, bypassed-sand deposition from Simmons and Bryant (1992) on the modern day salt-supported continental slope. High resolution sonar-derived physiographic images demonstrate intrabasinal paleo structures underlain by inflating salt structures. These structures have only thin layers of subparallel sediments on top and are surrounded by deep interlobal and supralobal mini-slope basins filled with thick sand-rich sediments (i.e., Keathley Canyon 255 and Green Canyon 908 wells). Subsequent periods of salt canopy remobilization can extend the sheet fronts and edges over an ancestral mini-basin, carrying the equivalently aged, thin-stacked condensed secions (SCS) with it. It is significant that these thick sands encountered beneath salt are deposited in a lower bathyal (or deeper) paleoenvironment, which appears similar to some recently detailed accounts for significant deepwater GOM discoveries (Mahaffie, 1994; McGee, 1994). Sand-rich subsalt sediments can thus be penetrated after identifying the positions of the updip depocenters and upper slope fairways from where sediments can be transported downdip to lower slope-abyssal depocenters.

McGuinness and Hossack (1993) demonstrated a reconstruction-dependent method of subsalt age-prediction in which sediment extension was equivalent to sheet lengthening and the translational fault extension could be used to determine the footwall cutoff "by measuring back from the hangwall cutoff on top of the sheet a distance equal to the amount of extension." This is not always easily determined in the contorted, deeply buried salt environment of the present-day shelf and upper slope, but is a refined valid reconstructive technique, and reconstructions are useful in fully understanding these sediment/salt relationships.

Conclusion

In conclusion, when stacked condensed sections are penetrated by wellbores directly above the top of an allochthonous salt sheet, limited subsalt biostratigraphic evidence demonstrates that the stacked condensed time section may be encountered in a repeated and thicker section of subsalt sediments. The subsalt section has a greater propensity for sand because of the ancestral paleotopographic relief associated with the salt sheet which results in sand-prone sediment-gravity deposits to bypass the inflated salt highs and accumulate in the basins surrounding salt scarp edges and fronts. Wellbores have confirmed these scenarios and suggest favorable conditions for subsalt sand deposition. It is important that subsalt explorers recognize stacked condensed sections (SCS) and implement these concepts in the future wells of the play. A significant thickness (4000+ ft) of subsalt section needs to be penetrated in future subsalt wells to adequately evaluate trapping opportunities below the salt in multiple sand potential sequences indicated by stacked condensed sections above the salt.

SUPRA-SALT STACKED CONDENSED SECTIONS (SCS):

Potential Indicators of Subsalt Stratigraphy

DWIGHT "CLINT" MOORE

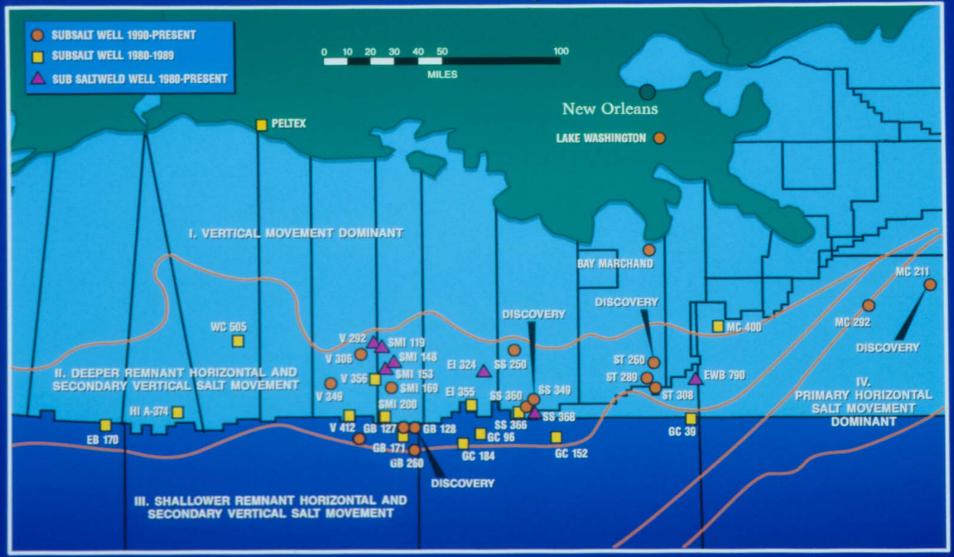
FRANK C. SNYDER

STEFAN "STEVE" RUTKOWSKI

ACKNOWLEDGEMENTS

The Authors express their appreciation to our managements and fellow colleagues at Anadarko Petroleum and Phillips Petroleum for their encouragement and support in preparing this presentation. The efforts of Art Waterman and his colleagues at Paleo Data, Inc. in partial review of this work and their contribution of biostratigraphic data are gratefully appreciated and acknowledged.

INTRODUCTION


- Depositional sequences of clastic sediments can be identified by the occurrence of bioevents and abundance patterns in microfossil assemblages
- Recognition and correlation of these sequences is a critical component of subsalt petroleum exploration

Reservoir Prediction is a critical component of subsalt petroleum exploration.

- Occurrence dependent on:
 - Paleoenvironments of Deposition
 - Structural Development (Pre & Post Salt Sheet Emplacement)
 - Impact of Salt Movement on Sediment Transport Fairways

OFFSHORE GULF OF MEXICO

Subsalt Wells and Salt Style Distribution

(MAJOR SHEET WELL PENETRATIONS)										
WELL NAME	DATE DRLD (TD)	TOP OF SALT	BASE OF SALT	TVD THICKNESS OF SALT	DRLD MD WELL (TD)	DRLD TVD SEDIMENT THICKNESS BELOW SALT				
Garden Banks 171 #1 Marathon	05/84	-8,460*	-9,510'	1,110'	10,597*	997'				
West Cameron 505 #2 Gulf	09/84	-13,900'	-15,590'	1,690*	18,500*	2,820*				
S. Marsh Island 200 #1 Diamond Shamrock	02/86	-8,730'	-9,720'	990	13,500	3,700				
Vermilion 356 #1 Amoco	12/87	-8,400'	-10,500'	2,100*	17,000	6,360'				
Lake Washington #1 Amoco (Onshore)	04/90	-9,350*	-13,410'	4,0751	21,241'	7,781'				
Miss. Canyon 211 #1 Exxon	06/90	-5,750'	-8,780'	3,030*	14,670'	5,820'				
Bay Marchand #1	05/91	-9,820'	-14,160*	4,340*	18,277	4,260'				

-12,7151

Confidential

-11,428

Confidential

Confidential

-12,010

Confidential

Confidential

Confidential

COnfidential

6.950"

Confidential

3,8251

Confidential

Confidential

2,460"

Confidential

9561

Confidential

Confidential

Confidential

18,000"

18.0201

16,500"

16,610"

18,6031

16,146"

19,000"

17,750"

18,034"

14,730"

20,399"

17,976

5,200"

Confidential

4,990"

Confidential

Confidential

4.046

Confidential

4,447"

4,934"

Confidential

Confidential

Confidential

-5,7651

Confidential

-7,603

Confidential

Confidential

-9,550

Confidential

-12,2461

-12.0781

Confidential

Confidential

Confidential

Garden Banks 165 #1

Ship Shoal 349 #1

Ship Shoal 349 #2

Vermilion 349 #1

Ship Shoul 360 #2

Ship Shoul 250 #1

South Timbalier 289 #1

Mississippi Canyon 292 #1

Garden Banks 127 #1

Vermilion 308 #1

South Marsh Is, 169 #1

South Timbalier 260 #1

Chevron

Amece

Phillips

Phillips

Phillips.

Unocal

Japex

CNG

Amoco

Anadarko

04/92

12/93

10/93

05/94

06/94

06/94

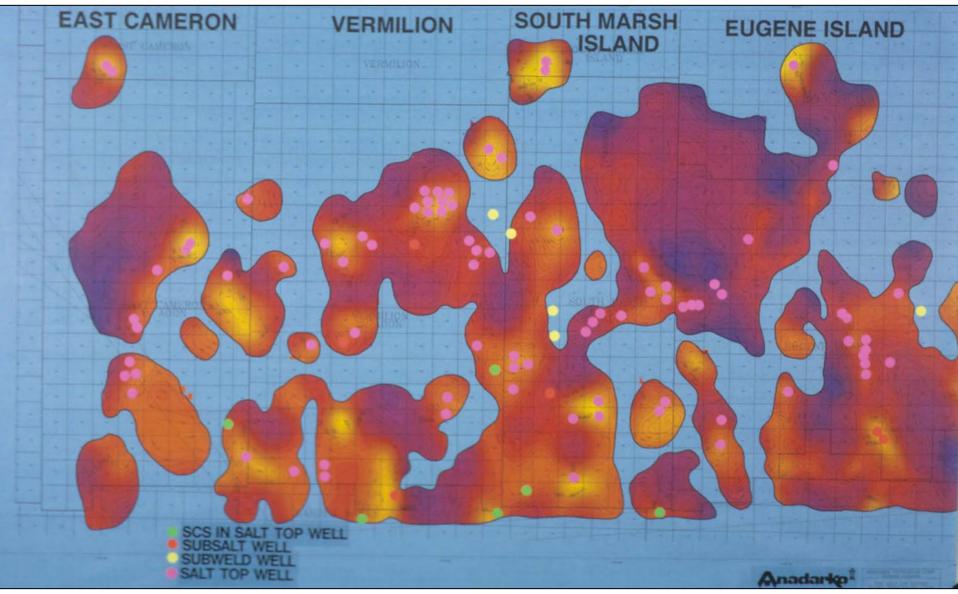
08/94

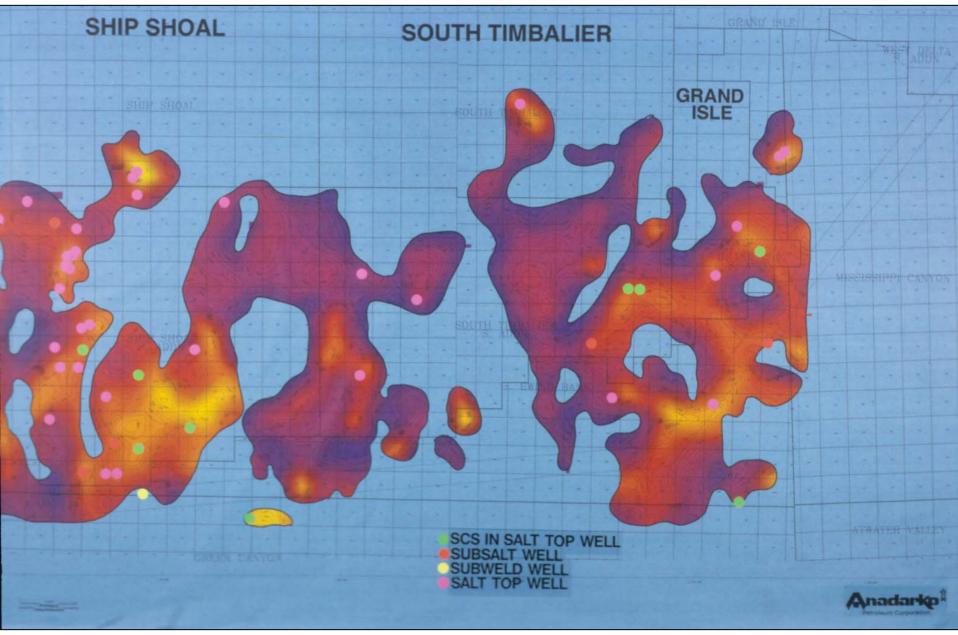
09/94

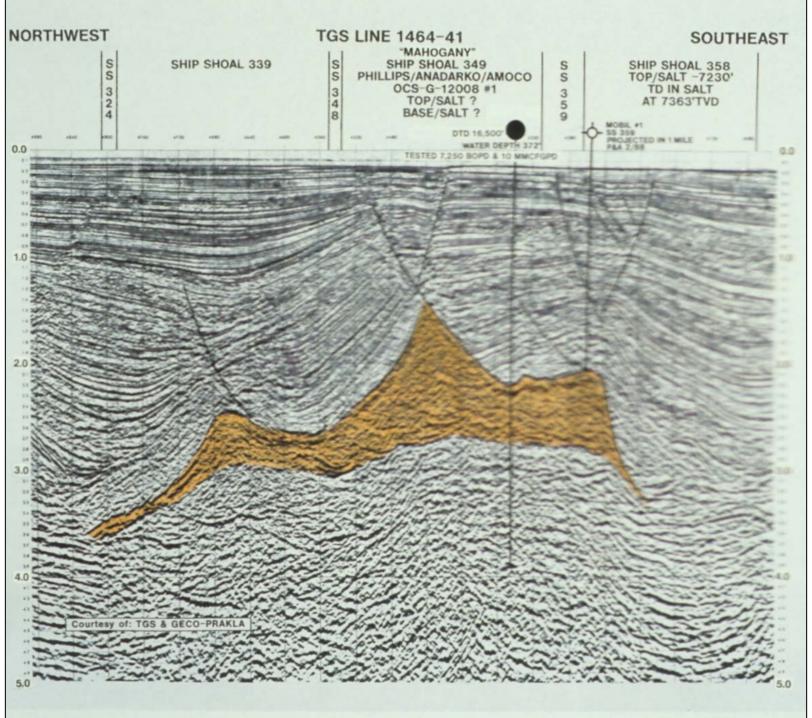
11/94

05/95

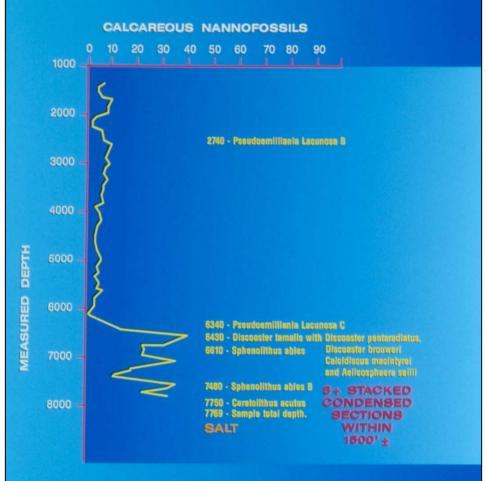
08/95

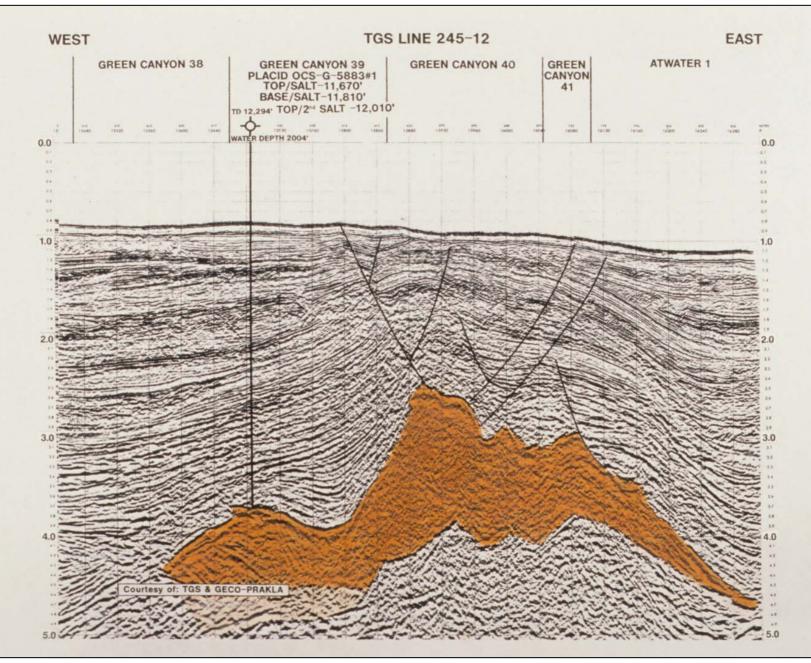

SIGNIFICANT SUB-SALT WELLS - FEDERAL OFFSHORE GULF OF MEXICO (SHEET EDGE/FLANK AND SUB-WELD WELL PENETRATIONS)

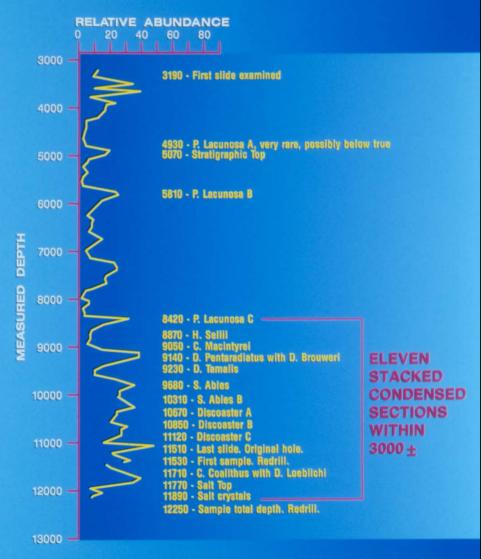

WELL NAME	DATE DRLD (TD)	TOP OF SALT	BASE OF SALT	TVD THICKNESS OF SALT	DRLD MD WELL (TD)	DRLD TVD SEDIMENT THICKNESS BELOW SALT
S. Marsh Isl. 153 #3, Phillips	8/73	NA	NA	NA	14,000'	NA
Cameron Parish Peltex #1	10/79	-20,3301	-20,415	85'	21,530'	1,0851
S. Marsh Isl. 119 #1, Shell	7/81	NA	NA	NA	17,700'	NA
Vermilion 292 #1, Shell	3/83	NA	NA	NA	16,000'	NA
Ship Shoal 366 #2, Placid	10/83	-7,040' -7,329' -7,505'	-7,281' -7,355' TD in Salt	241' 26' 513'+	8,203'	305' Between Salts
Eugene Island 324 #1, Gulf	03/84	NA	NA	NA	15,000'	NA
Green Canyon 98 #1, Conoco	06/84	-10,320'	-11,700'	1,380'	12,1211	340°
Green Canyon 39 #1 ST1, Placid	09/84	-11,675' -12,005'	-11,815' TD in Salt	140' 185'+	12,2941	190' Between Salts
Mississippi Canyon 400 #1, Amoco	01/85	-10,710'	-14,160'	3,450"	16,000'	1,840"
East Breaks 170 #1, Amoco	08/85	-16,075	-16,3251	250"	17,500"	1,100"
Mississippi Canyon 400 #2, Amoco	09/85	-14,230'	-15,220'	1,290'	17,010"	1,700'
High Is. A-374 #1, Mobil	09/85	-7,575'	-7,825'	250'	15,000"	7,100'
Green Canyon 152 #1STH1, Marathon	12/85	-11,350'	-12,470"	1,130	16,281' MD	1,623'
Ewing Bank 790 #1, Placid Oil	6/86	NA	NA	NA	15,143' TVD	NA
Vermilion 412 #1, Mobil	01/87	-7,705'	-9,020'	1,315'	9,5021	4021
Eugene Is, 385 #A-12, Union Texas	07/88	-12,450'	-12,510'	60'	14,104'	741
Eugene Is. 371 #B-4, Union Texas	08/88	10,650' MD	13,000' MD	1,875'	13,038'	30'
S. Marsh Isl. 148 #1, Chevron/Tenneco	12/88	NA	NA	NA	19,500'	NA
Green Canyon 184 #A-12, Conoco	12/90	-8,300"	-8,600'	300'	12,564'	3,964'
Garden Banks 260 #15TH2, Amerada Hess	05/93	-14,098	-16,108	2,010'	18,848' TVD	2,658'
Garden Banks 128 #1, Shell	7/94	Confidential	Confidential	Confidential	17,477' TVD	Confidential
Ship Shoal 368 #1, Amerada Hess	02/95	NA	NA	NA	15,774' TVD	NA


OFFSHORE GULF OF MEXICO

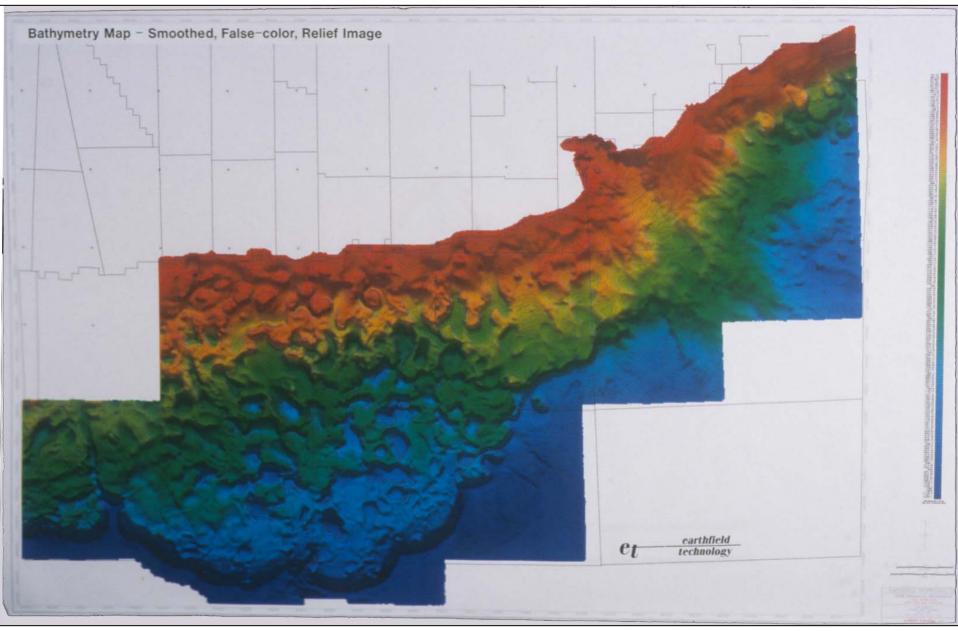
Subsalt Wells and Salt Style Distribution

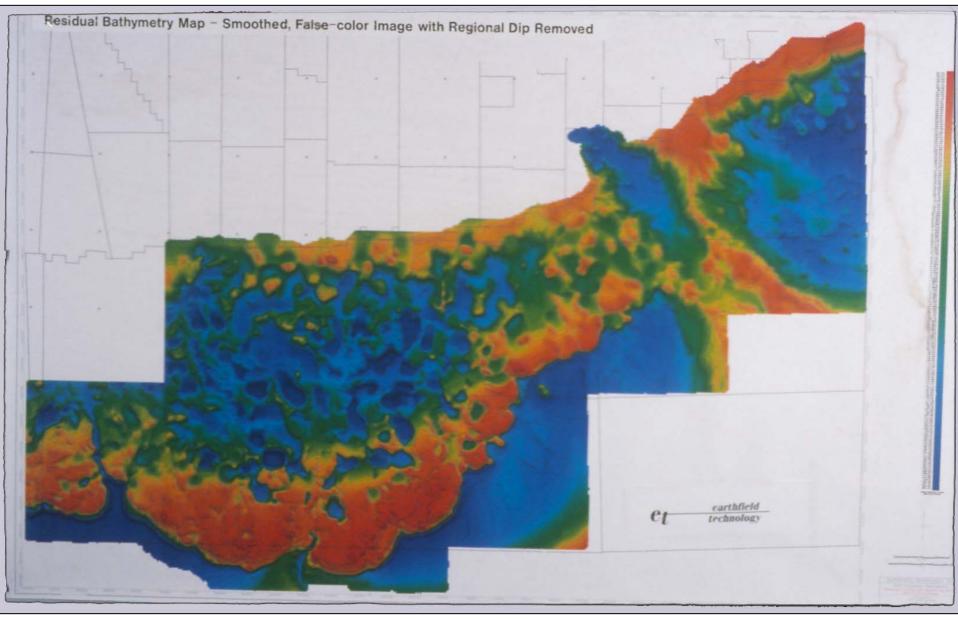


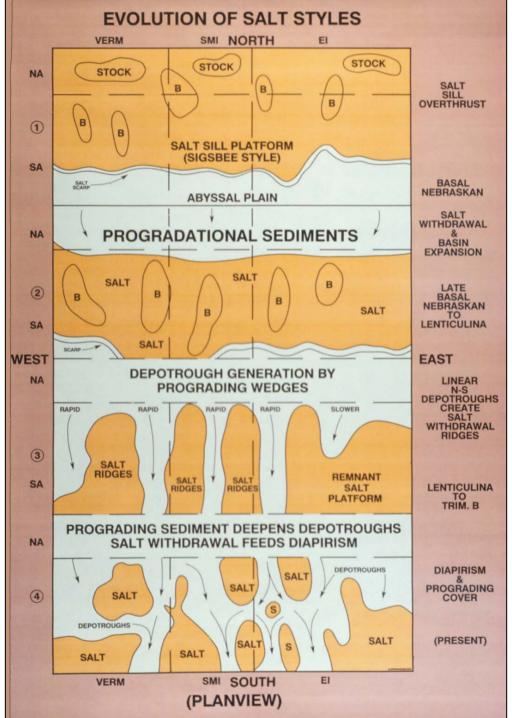


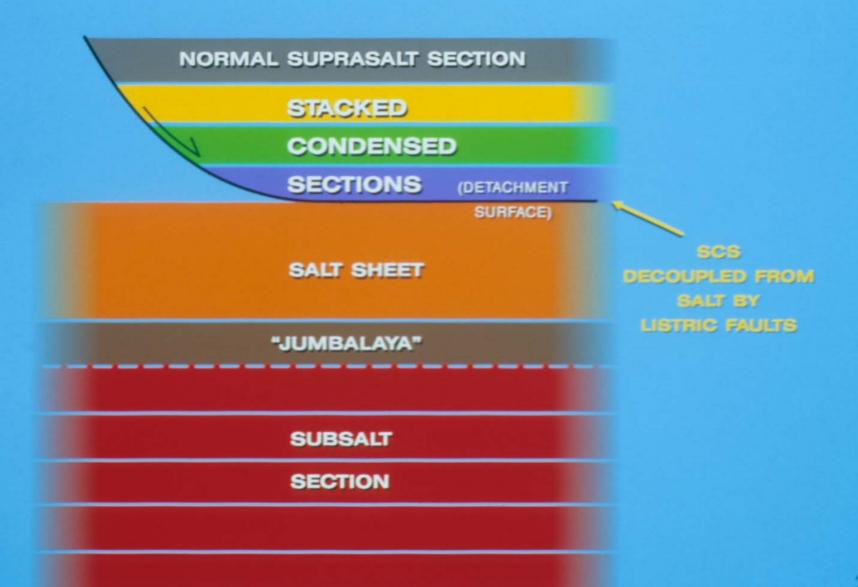


MOBIL OIL CORPORATION - GULF OF MEXICO BLOCK 359 - #1 OCS-G-5586 - SHIP SHOAL AREA




PLACID OIL COMPANY - GULF OF MEXICO BLOCK 39 - #1 OCS-G-5883 - GREEN CANYON




EVOLUTION OF SALT STYLES V 356#1 SA SMI 200#1 SOUTH NORTH **ECOLOGIC ZONE 6-5 WATERDEPTHS** RAFTED SEDIMENTS SALT В SILL **OVERTHRUST** В SALT SILL Δ SF SAND 1 A BASAL NEBRASKAN THICK SCARP FRONT & BASIN FLOOR FAN SANDS **ECOLOGIC ZONE 6-4 WATERDEPTHS** SALT WITHDRAWAL BASIN C **EXPANSION** (2) SALT SILL A LATE BASAL NEBRASKAN THICK SCARP FRONT & BASIN FLOOR FAN SANDS TO LENTICULINA **ECOLOGIC ZONE 4 WATERDEPTHS** LINEAR N-S D D DEPOTROUGHS D D C CREATE C D SALT (3) WITHDRAWAL RIDGES C SALT SILL BFF C A LENTICULINA TRIM. B THICK SCARP FRONT & BASIN FLOOR FAN SANDS E E E DIAPIRISM E D D D PROGRADING D E C COVER (4) C DIAPIR SALT SILL D В LENTIC SMI 200 C (PRESENT) B THICK SCARP FRONT & BASIN FLOOR FAN SANDS **VERMILION/SMI BORDER**

- Stacked Condensed Sections (SCS) coupled and conformably deposited upon the salt
- 2 Stacked Condensed Sections (SCS) decoupled from and extended along the top of salt
- 3 Normal thickness of individual sequences coupled or decoupled that set conformably upon the salt
- Normal thicknesses of individual sequences coupled or decoupled that are much younger than the surrounding salt flank intervals suggesting subaqueous erosion or non-deposition

- Stacked Condensed Sections (SCS) coupled and conformably deposited upon the salt
- Stacked Condensed Sections (SCS) decoupled from and extended along the top of salt
- 3 Normal thickness of individual sequences coupled or decoupled that set conformably upon the salt
- M Normal thicknesses of individual sequences coupled or decoupled that are much younger than the surrounding salt flank intervals suggesting subaqueous erosion or non-deposition

NORMAL SUPRASALT SECTION STACKED CONDENSED SECTIONS (DEPOSITIONAL CONTACT) CONFORMABLE AND COUPLED TO SALT SHEET "JUMBALAYA" SUBSALT SECTION

- Stacked Condensed Sections (SCS) coupled and conformably deposited upon the salt
- 2 Stacked Condensed Sections (SCS) decoupled from and extended along the top of salt
- 3 Normal thickness of individual sequences coupled or decoupled that set conformably upon the salt
- Mormal thicknesses of individual sequences coupled or decoupled that are much younger than the surrounding salt flank intervals suggesting subaqueous erosion or non-deposition

- Stacked Condensed Sections (SCS) coupled and conformably deposited upon the salt
- 2 Stacked Condensed Sections (SCS) decoupled from and extended along the top of salt
- 3 Normal thickness of individual sequences coupled or decoupled that set conformably upon the salt
- Mormal thicknesses of individual sequences coupled or decoupled that are much younger than the surrounding salt flank intervals suggesting subaqueous erosion or non-deposition

NORMAL SUPRASALT SECTION (DEPOSITIONAL CONTACT) SALT SHEET "JUMBALAYA" SUBSALT SECTION

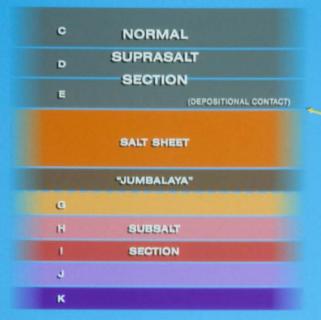
CONFORM/AELE SECTION COUPLED TO S/ALT

3A

NORMAL SUPRASALT SECTION

(DETACHMENT SURFACE)

SALT SHEET


"JUMBALAYA"

CONFORMABLE SECTION DECOUPLED FROM SALT BY

SUBSALT

SECTION

- Stacked Condensed Sections (SCS) coupled and conformably deposited upon the salt
- Stacked Condensed Sections (SCS) decoupled from and extended along the top of salt
- 3 Normal thickness of individual sequences coupled or decoupled that set conformably upon the salt
- Normal thicknesses of individual sequences coupled or decoupled that are much younger than the surrounding salt flank intervals suggesting subaqueous erosion or non-deposition

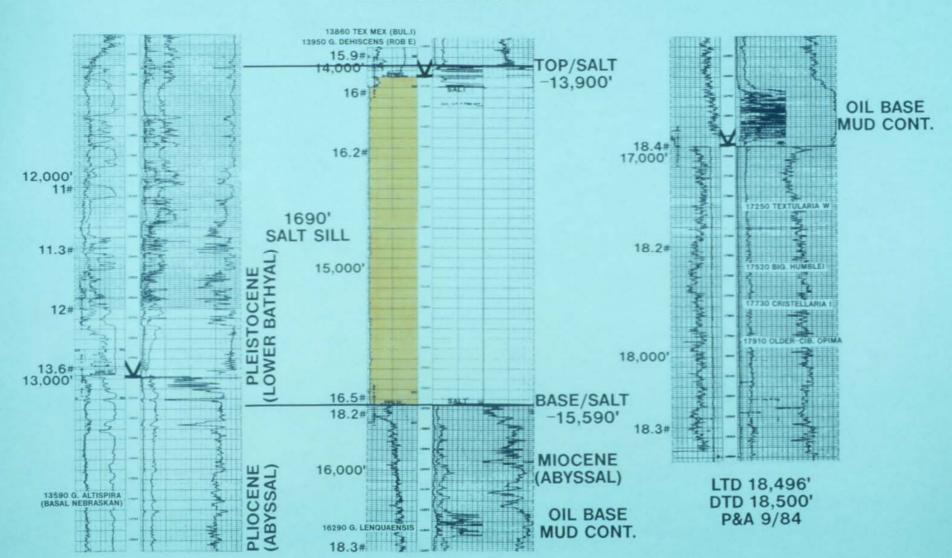
Younger non-SCS sequences coupled to sait suggest subaqueous erosion or non-deposition.

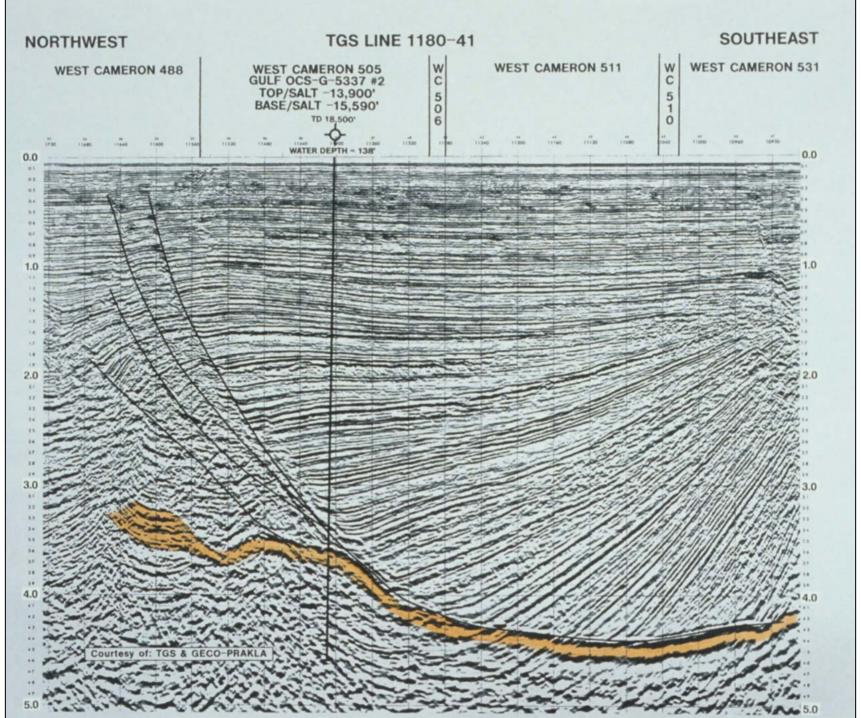
4A

Younger non-SCS sequences decoupled from sait suggest subaqueous erosion, non-deposition or overthrusting.

Results in three significant scenarios for age relationships between supra and subsalt sediments:

- Large sedimentary time gap
- 2 Conformable, with little apparent missing section
- Significant Repeat Section below salt, occurring when SCS is present above salt

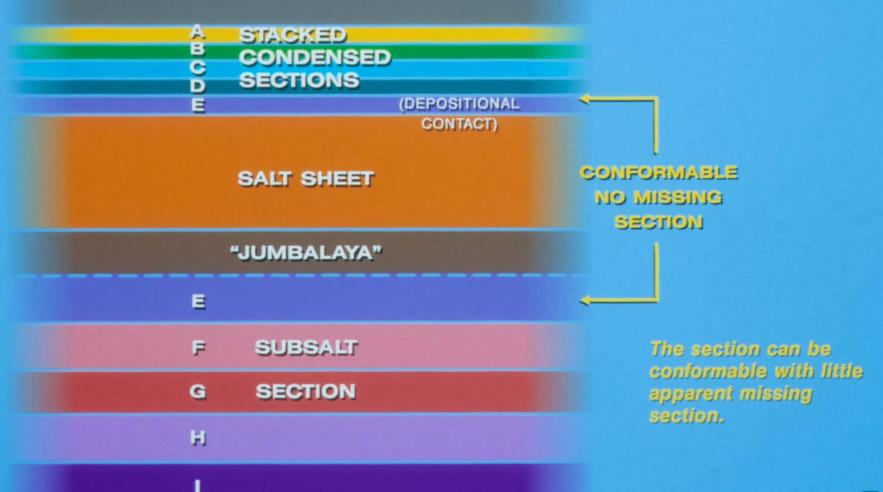

Results in three significant scenarios for age relationships between supra and subsalt sediments:

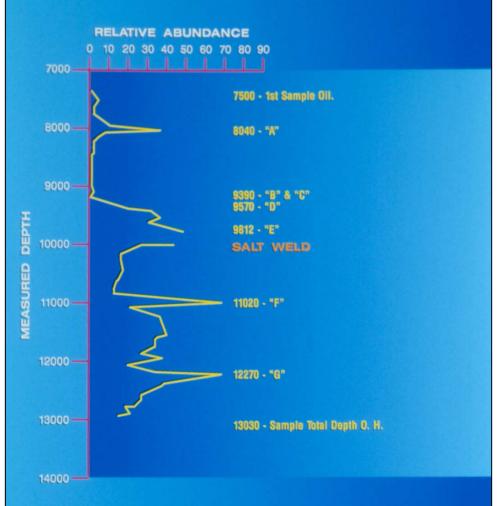

- Large sedimentary time gap
- 2 Conformable, with little apparent missing section
- Significant Repeat Section below salt, occurring when SCS is present above salt

NORMAL SUPRASALT SECTION STACKED CONDENSED SECTIONS (DETACHMENT SURFACE) SALT SHEET LARGE SEDIMENTARY TIME GAP "JUMBALAYA" H SUBSALT J SECTION K

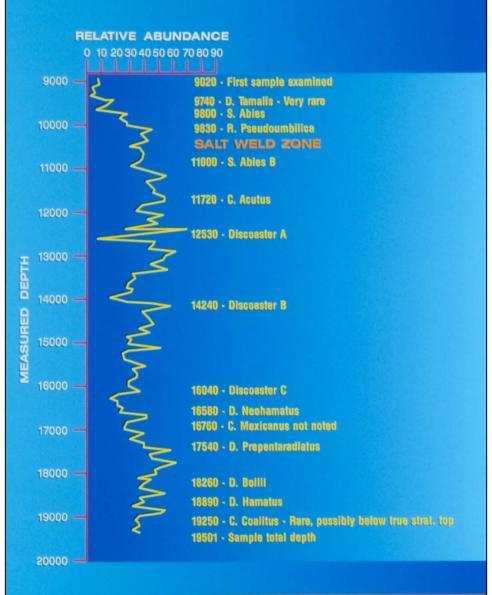
Most often occurs along the updip edge of salt sheets where a large listric fault system formed above the salt.

GULF #2 OCS-G-5337 WEST CAMERON 505




Results in three significant scenarios for age relationships between supra and subsalt sediments:

- Large sedimentary time gap
- 2 Conformable, with little apparent missing section
- Significant Repeat Section below salt, occurring when SCS is present above salt


NORMAL SUPRASALT SECTION

GULF OIL COMPANY - GULF OF MEXICO BLOCK 324 - #1 OCS-5816 - EUGENE ISLAND

CHEVRON/TENNECO - GULF OF MEXICO BLOCK 148 - #1 OCS-G-8685 - SOUTH MARSH ISLAND

Results in three significant scenarios for age relationships between supra and subsalt sediments:

- Large sedimentary time gap
- Conformable, with little apparent missing section
- Significant Repeat Section below salt, occurring when SCS is present above salt

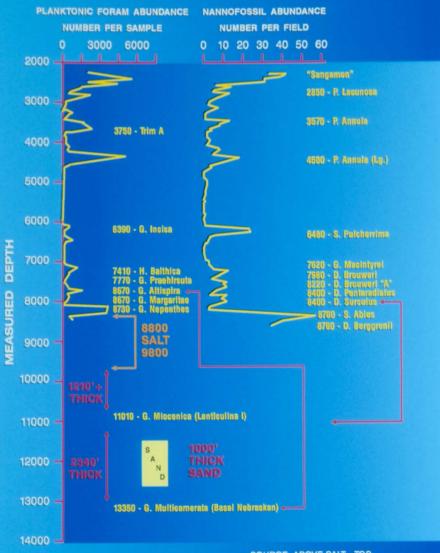
NORMAL SUPRASALT SECTION

A STACKED
B CONDENSED
C SECTIONS (DEPOSITIONAL CONTACT)

SALT SHEET

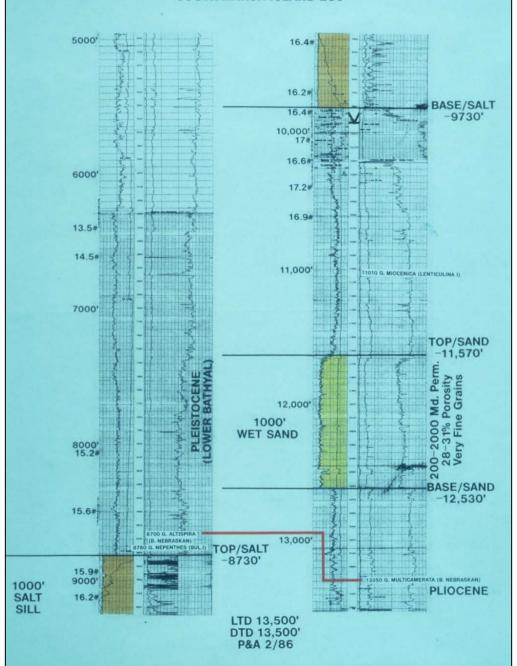
"JUMBALAYA"

A

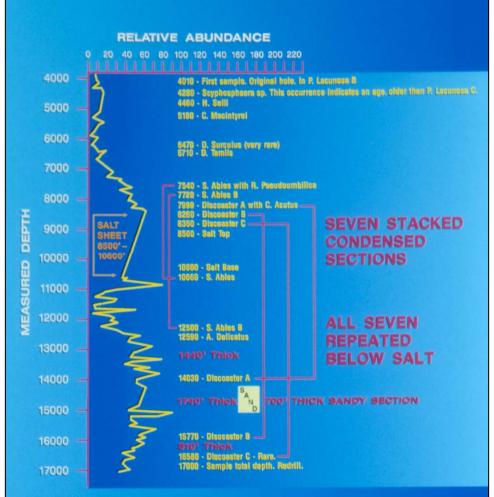

B SUBSALT SECTION

C

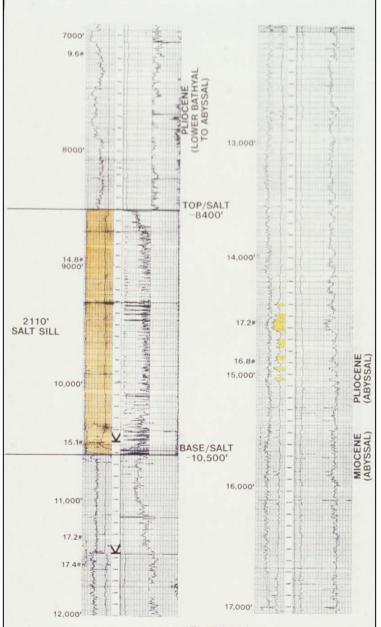
REPEATED SECTION

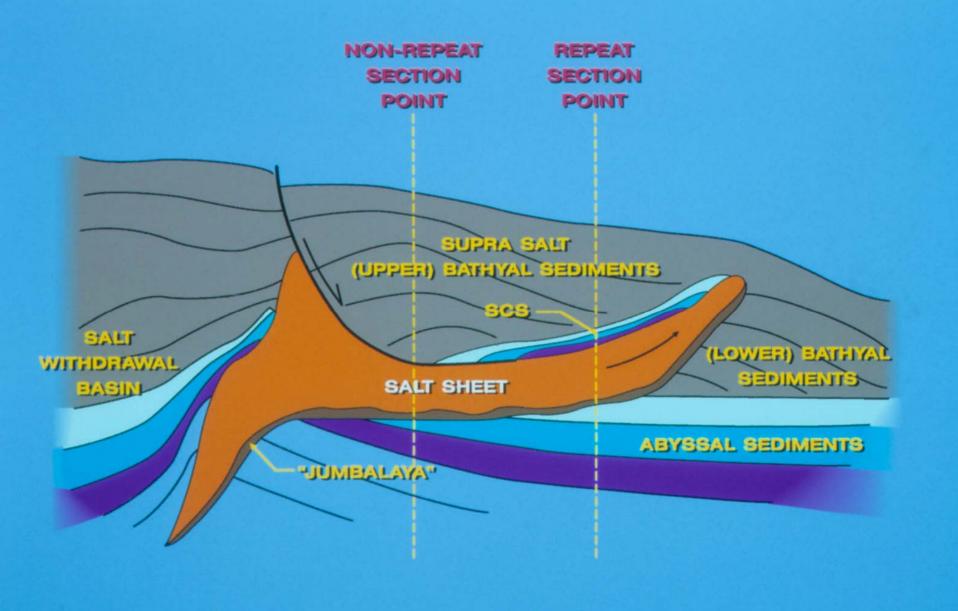

A prominent repeated section can occur when a stacked condensed section is present above the salt sheet with "5 to 10" time expansion below salt.

DIAMOND SHAMROCK - GULF OF MEXICO BLOCK 200 - #1 OCS-0-7719 - SOUTH MARSH ISLAND



SOURCE: ABOVE SALT - TGS
BELOW SALT - PALEO-DATA


DIAMOND SHAMROCK #1 OCS-G-7719 SOUTH MARSH ISLAND 200


AMOCO FRODUCTION COMPANY - GULF OF MEXICO BLOCK 356 - #1 OCS-Q-7690 - VERMILION

AMOCO #1 OCS-G-7690 VERMILION 356

LTD 17,034' DTD 17,000' P&A 12/87

CONCLUSIONS

- Stacked Condensed Sections(SCS) or "Mega-Condensed Sections" encountered above allochthonous salt sheets suggest that thicker and "repeated" sequences of age equivalent sediments may be encountered below the salt sheet.
- Subsalt sediments below SCS may have greater propensity for sand due to sand prone gravity driven depositon bypassing these salt inflated highs and accumulating around salt scarp edges and fronts. All prior to sheet thrusting with rafted SCS on sheet surface.
- Thick intervals of subsalt sediments (4,000+) should be penetrated in future wellbores below salt sheets to encounter all subsalt age equivalent sequences seen in the rafted SCS supra salt.

The Authors would like to express their appreciation to the following for the use of various data:

Anadarko Petroleum Corporation and TGS\Calibre Geophysical Company

Art Waterman- Paleo Data Inc. and the Offshore Oil Scout Association

TGS, Geco-Prakla, Amoco, Earthfield Technologies and Western Geophysical

References

- Amentrout, J., and J. Clement, 1990, Biostratigraphic calibration of depositional cycles; a case study in High Island Galveston-East Breaks Area, offshore Texas: GCS SEPM 11th Annual Research Conference, December 1990, p. 21-51.
- Mahaffie, M.J., 1994, Reservoir classification for turbidite intervals at the Mars discovery, Mississippi Canyon 807, Gulf of Mexico: GCS SEPM 15th Annual Research Conference, Submarine Fans and Turbidite Systems, December 1994, p. 233-244.
- McGee, D., P. Bilinski, P. Gary, D. Pfeiffer, and J. Sherman, 1994, Geologic models and reservoir characteristics of Auger field, deepwater Gulf of Mexico: GCS SEPM, 15th Annual Research Conference, Submarine Fans and Turbidite Systems, December 1994, p. 245-256.
- McGuinness, D.J., and J.R. Hossack, 1993, The development of allochthonous salt sheets as controlled by the rates of extension, sedimentation, and salt supply: GCS SEPM 14th Annual Research Conference, Rates of Geologic Processes, December, 1993, p. 127-139.
- Moore, D.C., and R.O. Brooks, 1995, The evolving exploration of the subsalt play in the offshore Gulf of Mexico: GCAGS Transactions, p. 7-12.
- Paleo Data/GECO, 1992, Gulf of Mexico Chronostratigraphic Correlation Chart.
- Simmons, G.R., and W.R. Bryant, 1992, Slope sedimentation above an allochthonous salt substrate, northwest Gulf of Mexico: AAPG Annual Convention Abstracts, 1992, Calgary, p. 120.