Use of Fracture-Mapping Technologies to Improve Well Completions in Shale Reservoirs

Michael Mayerhofer¹, Norm Warpinski¹, and Elyezer Lolon¹

Search and Discovery Article #40336 (2008)
Posted November 26, 2008

*Adapted from oral presentation at AAPG Annual Convention, April 20-23, 2008

¹Pinnacle Technologies, Houston, TX (mike.mayerhofer@pinntech.com)

Abstract

Recent innovations in horizontal well drilling and completion techniques have been key factors to the growing success of shale gas production in the U.S. today. In particular, within the past years, significant advances have been made in the fracture completion of shale gas wells. Large waterfracs and horizontal wells along with the ability to directly measure hydraulic fracture network growth with microseismic fracture mapping have pushed the envelope in shale reservoirs such as the Barnett, Woodford and Fayetteville. This paper will present recent case studies on different types of shale fracture completions along with microseismic mapping results of actual fracture network growth. Over two-hundred wells have been mapped in shale reservoirs with microseismic imaging and tiltmeter fracture mapping over the past several years. The fracture mapping allows for direct measurement of the fracture network orientation, height, length and width, as well as interaction with local geology such as faults and karsts. The results have been used to determine well spacing, offset well locations, refracture candidate identification, staging strategies and real-time changes to fracture treatment design and execution in both horizontal and vertical wells. The fracture mapping results generally show that the hydraulic fracture growth is very complex in shales and it is critical to measure the size and orientation of the fracture network to optimize horizontal well planning and placement. Other network parameters such as fracture spacing and conductivity are also discussed. Understanding the impact of fracture network properties on well performance is critical to successfully developing and optimizing production in shale reservoirs.
Use of Fracture Mapping Technologies to Improve Well Completions in Shale Reservoirs

2008 AAPG Annual Convention & Exhibition

Michael Mayerhofer, Pinnacle Technologies
Norm Warpinski, Pinnacle Technologies
Elyezer Lolon, Pinnacle Technologies
Microseismic Fracture Mapping

Above Reservoir

Straddling Reservoir

RECEIVERS

MICROSEISMS

FRACTURE

RECEIVERS

RESERVOIR
Microseismic Monitoring

- The Detection And Locating Of Micro-Earthquakes Induced By Hydraulic Fractures To Map Out The Geometry & Characteristics Of The Hydraulic Fracture
Two “Quantum Leaps” in Shale Completion Technology:

1. Large, high-rate waterfracs with low proppant concentrations to increase stimulation surface area
2. Horizontal Wells to maximize stimulation surface area (Mostly cased and cemented, drilled transverse to principal frac direction)
Fracture Mapping Shows Large Fracture Networks in Shales

- Waterfracs Induce Wide Fracture Networks in Some Shales
 - Evidence:
 - Microseismicity (e.g., SPE 95568)
 - Nearby Wells That Load Up With Stimulation Fluids
 - (e.g., SPE 77411)
 - Surface Tiltmeter: Orthogonal Fractures (40/60 Split)
 - Mechanism
 - Penetration of Low Viscosity Fluid into Pre-Existing, Mostly Re-Healed Natural Fractures
 - Full Dilation of Orthogonal Fractures (e.g., Hydraulic Fractures Propagating In More Than One Plane)
 - Importance of Low Stress Bias
 - Resultant Conductivity (Proppant and Residual Shear Offset)
Orthogonal Fluid Flow Estimates

- Estimate Fracture Permeability Necessary To Obtain 500-1,000 ft Offset Fluid Movement
 - Example Viscosity Dominated Calculation
 - Water (1 cp)
 - 2,000 psi Pressure Drop

\[y = \sqrt{\frac{2 \ k \ t \ \Delta P}{\varphi \ \mu}} \]

Result: Must Have Hydraulic Fractures In Order To Kill Offset Wells
Early 1-Stage Cemented Horizontal Well

- Tried to frac cemented lateral in one stage – did not achieve adequate network at heel
- Refrac opportunity
- Change future completions by doing more stages
The Treatment Matters

• Barnett Shale Longitudinal
 - Gel Frac Versus High Rate Waterfrac (Refrac)
 - Increased stimulated volume

SPE 95568 (Devon)
The Treatment Matters

- Barnett Shale Longitudinal
 - Gel Frac Versus High Rate Waterfrac (Refrac)
 - Increased stimulated volume

Test Well Gas Rate

Gel Stimulation

Waterfrac Refrac

SPE 95568 (Devon)
Geology Matters: Risk of Growth through Fault into Water-Producing Layer
Woodford Shale – Complex Interaction with Geology

Stage 1 events
Stage 2 events
Stage 2RF events
Stage 3 events

Looking NW
Lateral: Depth ratio is 3.00:1
Using Fracture Mapping for Well Placement & Infill Drilling
Real-time Mapping Aids Completion

- ▲ = First Stage Perf Clusters
- △ = 2nd Stage Initial Perf Clusters
- ▲ = Revised 2nd Stage Perf Clusters

1st Stage

2nd Stage

Treatment Well
Observation Well

West-East (ft)
South-North (ft)
Fracture Network Properties and Production

- Understanding the impact of fracture network properties on well performance is critical for frac & completion design and field development
 - fracture network size and density
 - fracture network conductivity
Stimulated Reservoir Volume (SRV)

\[\sum (SRA \times h) \]
SRV vs. 6-month Average
All Wells

SRV = Stimulated Area x Net Pay

\[y = 0.5569x + 356.11 \]

\[R^2 = 0.5486 \]
Vertical Well History Match

- Gas Rate (Actual versus Predicted)
 - Actual: 1200.00, 1400.00, 1600.00
 - Predicted: 200.00, 400.00, 600.00

- Casing Pressure
 - Dates: 04/01, 11/01, 05/02, 12/02, 06/03, 01/04, 08/04, 02/05, 09/05

- Fracture Network Model

- Model
 - $k = 0.0001 \text{ md}$
 - $w_k f = 4 \text{ md-ft}$
 - $L_f = 7,720 \text{ ft}$
Horizontal Well Hydraulic Fracture Network Model

SRV = 1,200 x 10^6 ft^3
Frac Spacing=400 ft

After 1 Year

SRV = 1,200 x 10^6 ft^3
Conductivity = 4 mD.ft

After 15 Years

k = 0.0001 md (matrix)
Network Size, Frac Spacing and Conductivity are Key For
Production From Shale Networks

Size

Frac Spacing

Frac Spacing: 200 ft

Frac Spacing: 100 ft

SRV = Stimulated Reservoir Volume, $\times 10^6$ ft\(^3\)
Fracture Conductivity

Cumulative Gas Production vs. Time for different fracture conductivities:
- 0.5 mD.ft
- 2 mD.ft
- 5 mD.ft
- 10 mD.ft
- 20 mD.ft
- 50 mD.ft

The graph shows the effect of increasing fracture conductivity on cumulative gas production over time.

Additionally, a grid model illustrates the conductivity distribution in a horizontal well treatment.
Conclusions

• Fracture mapping is key to understanding the generated fracture network
• Drainage area will largely be confined to the stimulated area due to the sub-microdarcy shale permeability
• Goal is to generate the largest possible fracture network with the highest possible density to achieve maximum fracture surface area and recovery
 – Drill longer laterals, larger jobs, more stages, more perfs
 – Refracs, start/stop fracs, diversion
 – Simultaneous fracs, zipper fracs, etc.

• Balance the creation of a dense fracture network with overall network size (aggressive diversion may be detrimental to generating a larger network)
Acknowledgements

Special Thanks to:

Devon Energy Corporation and Antero Resources