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Abstract

Icehouse carbonate diagenesis is complex. Prolonged subaerial exposure can impart a strong early meteoric-diagenetic signature
through a carbonate platform, a consequence of high-frequency high-magnitude sea-level cycles. We have used CARB3D+ to
forward-model the evolution of porosity in a generic platform using rates of diagenesis derived from hydrochemical studies of the
modern Bahamas (high-stand island) and Guam (uplifted analogue for lowstand island).

There is an apparent contradiction between the significant net dissolution evident from calcium concentrations in modern carbonate
groundwaters under all climates (at rates of up to several %/ky according to hydrochemical studies), and the prodigious amount of
apparently meteoric cementation in the rock record (with reduction of depositional grainstone porosities of > 45% to limestone
porosities of < 35% before burial diagenesis). Using modern rate data for subsurface diagenetic processes, a range of porosities can be
simulated depending upon assumptions made regarding both hydrological routing of waters through the vadose zone and the character
of freshwater-lens diagenesis. However, using most realistic scenarios, it is difficult to simulate pre-compaction porosity values of less
than 60%. Only by specifying an external input of calcium carbonate at least equal to the amount discharged from the meteoric system
can geologically reasonable porosities be modeled. The most plausible input into the open-system is calcium carbonate derived from
land-surface dissolution, and we explore implications of reprecipitation within the vadose zone and freshwater lens. Because the
source of this surface-derived carbonate is missing from the rock record, only by forward modeling and examining the rock record for
evidence of missing section can we explore this process and its importance for subsurface porosity evolution.
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Predicting meteoric carbonate diagenesis

Current Paradigm

Different meteoric
hydrological zones can give
different early diagenetic alteration
products and rates

We can forward-model hydrological
zones and their associated rates to
give us porosity prediction (and
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PROCESS based forward model
giving predictions of:
— Depositional Facies
— Diagenetic Products

— Porosity and Permeability




CARB3D* fundamental diagenetic controls

Hydrozones are Dynamic

Period simulated in movie
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CARB3D* fundamental diagenetic controls
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How do you measure the rates?

Rain Water Soil Water Coastal Seep
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Progressively sample water through the hydrological system
Here we are using Guam

sample (derived from
water/rock interactions)

cl Measure Ca,g from water
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Seawater

Change in Cayg % Fluid Flux = Rate of porosity change



How Cayg relates to the rock record

Grainstone Example

A Increase in Cayg N QRS A Decrease in Cays
= dissolution = cementation

Havily Dissolved Heavily Cemented

Over time the delta change in Cayg will reflect porosity change



The calcium budget through the system (Guam)
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The calcium budget through the system (Guam)
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The calcium leaving the system

i

Net Cays (ppm)

Recharge (m/a)

Vadose thickness Majuro — Highstand

(m) = e

Net Dissolution
(m3/km?/a)

Guam Data: Whitaker et al. 2006
Majuro Data: Anthony et al. 1989

Total dissolution on both carbonate islands is large

and is independent of sea level change!




CARB3D* fundamental diagenetic controls
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How cumulative hydrozones work

For very simple case, each sequence has 80 ky

subaerial exposure, but 350 ky total VZ
exposure and 200 ky total FWL exposure
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The calcium budget via overland flow
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Guam’s surface dissolution is high

Highly vegetated and karstified




The calcium budget via the soil zone
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The calcium budget via dual recharge
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Guam rate data — Input of soil-zone derived CaXS
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So what are we seeing?

Ontop of Within Vadose &
Vadose Freshwater lens

Output from
Freshwater Lens

Complex array of
dissolution and
cementation
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Conclusions

» Forward modelling using rate data from hydrochemical
process based studies gives insight into carbonate
diagenesis

> Relative rates of surface and subsurface dissolution
(and cementation) are critical in determining rates of
porosity evolution

» Future studies should focus on surface and subsurface
processes and include the effects of dual recharge

» Industry needs to understand cements and the calcium
source of those cements if they want processes based
reservoir predictability






Surface dissolution rates

Method Rate (mm/ka)  Study Area No. of Refs

Field Experiments 352 % 305 Global — From Israel 8
(n=11) to Bikini Island

Hydrochemical 75462  Global-From 4

(n=5) Bahamas to Guam

Historical 74 x70 Global — From 5
(n=10) Enewetak to S.E.

Australia
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