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Abstract

Shales are arguably the least understood lithotype causing significant uncertainty in the interpretation of basin modeling results and
seal risk. Burial-driven compaction (i.e., systematic reduction of pore throat size during progressive burial) is not the primary control
on seal behavior. Rather, variations in depositional conditions, related to high-frequency stratigraphic fluctuations, appear responsible
for broad variations in shale properties and seal character. Analyses of samples from deep-water (submarine fan) depositional settings
reveal strong relationships between mudstone facies and sealing character. Silt-poor well-laminated shales generally have excellent to
exceptional sealing behavior. Increased percentages of silt-sized detrital grains (> 20%) enhance preservation of relatively large-
diameter pore throats, thereby lowering sealing capacities. Sub-parallel-alignment clay minerals and organic matter and early marine
carbonate cementation can significantly enhance sealing capacity. Bioturbation generally degrades sealing capacity. Sandy injectites
can compromise seal effectiveness. Silt-poor well-laminated shales typify more distal parts of submarine fan deposits. In contrast,
mudstones associated with proximal channel-levee complexes commonly exhibit highly deformed fabrics and are moderately to very
silty (clay-poor) and consequently have relatively low sealing potential. Compartmentalization by shale laminae is common in channel
margins. Comparable shale facies patterns are observed in samples from deepwater Gulf of Mexico wells, offshore West Africa wells,
and outcrop analogs (Arkansas and Wyoming). Because of variations in fabric and texture, deepwater shale types exhibit different
compaction rates, which can result in erroneous interpretations of burial history.
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Introduction

Observed ranges/variations in seal data are attributed to
differences in shale facies (i.e., differences in shale fabric).

Deep-marine depositional systems contain 6 to 8 shale/seal
lithotypes (based on analyses of Tertiary & Cretaceous
subsurface & outcrop sample sets).

Seal character exhibits systematic variability from proximal to
distal parts of deepwater depositional settings.
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Influences on Seal Character
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Basin Comparisons —

Moderately silty shales -
(mean: 4,425 psia) Seal CapaCIty
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Deepwater
Seal Lithotypes
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Deepwater Shale Summary

Seal type
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Deepwater Seal Summary

Seal type Silt | Carbonate 10% MICP Shale
Fabric

8,395 psia well-laminated

7,445 psia faint laminations

4,950 psia clay mottles

3,175 psia silt mottles

1,360 psia silt laminae

7,655 psia massive

(Dawson & Almon, 2006)
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Stacked channels in deep-
water depositional setting

(from: Mayall et al., 2006)




Seal types 4 & 5 Offshore West Africa
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Data integration reveals stratigraphic
patterns (e.g., stacking of seal &
reservoir lithofacies).




Secismic-Based Shale Facies

Sand rich areas stand out in bright, warm tones. Areas away from those, with
more homogeneous cool tones indicate better seals.
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Proximal deepwater shales
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(after: Slatt et al., 1995)




Arkansas Outcrops: MICP Data & Shale Facies
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Arkansas Outcrops (Jackfork Formation)
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Outcrop Analog: Submarine Fan Sequence

Tertiary: California

Thick shale sequence with thin,
Interstratified sandstones

Stratigraphic separation of
reservoir & top seal intervals

20
10
00
20
uo
100

Thick sandstone turbidites
with interstratified thin shales




Potential

Waste Zone

)
5
g
g
g
S

H
3
8
3
]

8
3
s

Juncal
J97
328.5m

Mercury Injection Pressure (PSIA

=
5

100 80 60 40 20 ©
Mercury Saturation (%)

)

Incremental

Saturation

Cumulative
Percentile

001
1000 0100 0010 0001
Pore Diameter (microns)

Excellent Seal
Total clay: 78%
Total silt: 10%

S
=]
3
3
S

H
3
8
3
s

.

H
g

Juncal
J60
276.5m

Mercury Injection Pressure (PSIA’)A

=
5

100 80 60 40 20 ©
Mercury Saturation (%)

Incremental

Saturation

7
4
1

Cumulative
Percentile

001
1000 0100 0010 0001
Pore Diameter (microns)

Good Seal
Total clay: 62%
Total silt: 17%

S
=]
8
3
S

H
3
8
3
S

Juncal
J36
2355m

i
<
n
e
@
=
2
2
o
o
e
©
g
=
8
s
=

=
5

100 80 60 40 20 ©
Mercury Saturation (%)

Saturation (%)

Cumulative

1000 0100 0010 0001
Pore Diameter (microns)

Poor Seal
Total clay: 45%
Total silt: 28%

5]
3
3
3
s

H
3
8
3
S

H
g

Juncal

Mercury Injection Pressure (PSIA’)A

=
5

100 80 60 40 20 ©
Mercury Saturation (%)

Increment.
Saturation (9

@
e
©

o

Cumulative

0.
0.
0.
0.01 d
1000 0100 0010 0001
Pore Diameter (microns)

Poor Seal
Total clay: 17%
Total silt: 45%




Conclusions — 1

Deepwater depositional systems contain a variety of shale facies,
each exhibiting a range of seal characteristics.

Variations in deepwater seal character are related strongly to
variations in shale textures & fabrics.

Seal character is enhanced in well-laminated, silt-poor, organic-
rich shales (enhanced by diagenesis: e.g., carbonate cementation).
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Conclusions — 2

Seal prediction models based on single parameters (e.g., total
clay content) lack tenability.

Maximum seal variability exists within proximal (i.e., highly
channelized) lithofacies (associated with high potential for
reservoir compartmentalization).

Analyses of shale outcrops are valuable as seal analogs.

Waste zone Is a common aspect of deepwater HC accumulations.
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Quiz
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Can you identify
the “best” seal?
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