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Abstract

Analysis of sediment cores, 2D Huntec and 3D shallow seismic-reflection data reveal two main canyon types: 1.) those that have
relatively broad, flat bottoms, which are probably formed by glacial outburst floods with inner terraces likely to be formed by
proglacial failures. These canyons are principally erosional in their axes, their floors are dominated by winnowed conglomerates and
stiff Pleistocene muds with terraces recording recent axis bypass; 2.) canyons that do not extend updip to the shelf margin but
terminate locally and appear to be created by retrogressive failure (modifying aggradational deposits) and are draped by Holocene and
Pleistocene muds. The shallow 3D data reveals upper slope accommodation space created by large-scale mass wasting events,
reflecting a period of slope failure. These events are succeeded by a complex history of deposition dominated by smaller-scale mass
transport deposits and canyon/channel overbank deposits. The slope failure and associated deposits fundamentally setup the canyon
configuration that is observed on the modern seafloor. Two interrelated processes controlled canyon development: 1.) the failure
scarps resulting from the mass wasting event created accommodation space available for canyon ridge aggradation and 2.) the scarps
captured subsequent sediment gravity flows necessary for their construction. It is demonstrated that these scarps act as a precursor to
canyon development. Large slide blocks (up to ~2 km®) created topography on the paleo-seafloor and were preferential sites for
locally ponded deposition. The canyon ridges internally record a complex history of overall aggradation via sediment gravity flow
deposits and degradation by erosive flows and slumping. Isopach maps and reflection geometries of individual packages indicate
offset stacked overbank wedges in the construction of these ridges.
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Findings:

» Slope basin formed as a result of major failure
 This sets up modern canyon configuration (seafloor)
» Canyon locations are determined by the position of older slump
scarps
» Mass failure created accommodation on the upper slope
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Two types of canyon on the slope:

1. Those that developed through ridge aggradation (connected to the shelf)
» Canyon axes are predominantly non-depositional
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Location of the 3D volume, Southwest Grand Banks Slope

BAOTW BOOD0W S5°00°W S0rraTw

Wf Undland

[ R

Grand Banks

0 Nova Scotia




X
SPODDS ¢dl vhpoitliton  MURPHY  ConocoPhillips

Stanford Project On Deepwater Depositional Systems OIL COMPANY LTD.

A time-structure (bathymetry) map of the seafloor

Depth below sea level is between ~ 400 m — 2000 m
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Basin-forming failure
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» A major failure episode — depa be traced across
the volume

* Proceeded by high-amplitude, depositionally complex
packages
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Time-structure map: Top of mass transport deposits (MTDs)
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~.41 km _ | e Top of MTDs:

 The failure scarps and
associated deposits set up
modern slope configuration

» Arrows highlight scarps
(commonly scoop shaped) on
the top of the MTDs
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Time-structure map of seafloor Time-structure map of MTD surface
(draped on seafloor) (draped on MTD surface)

Seafloor time-structure attribute
draped over the MTD surface
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Similarity between the seafloor morphology and the paleo-

morphology related to the MTD surface
Canyon Evolution - Grand Banks
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Isochron map of the interval between MTD top surface and seafloor
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Internal Ridge Growth
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Evolution of aggrading ridges
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Ridge Isopachs

Horizons defining the four intervals between the seafloor and the lower
bounding surface (the base of the ridges) used to investigate ridge evolution.
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Composite of ridge isochron maps
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* Interval isochron attribute
mapped to this surface

e This shows individual
stages of ridge aggradation
(deposition) vs. degradation
(e.g. slumping/erosion)

Canyon Evolution - Grand Banks
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Evidence For Recent Bypass?
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Transect of sediment cores Holocene mud and thin
across the central canyon turbidites on levees.

Pleistocene mud and
winnowed cobbles on
canyon floor

Canyon Floor
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Seafloor Amplitudes

Very different amplitudes observed in the canyon types:

On the seafloor this is due to the lithology in their axes
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Eastern Canyon
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Eastern Canyon

This canyon is observed on the seafloor, but on the

MTD surface there is no evidence for its location First evidence of this

canyon. Rafted blocks on
canyon floor

Interpreted to be formed by
retrogressive slumping of

local ‘ridge’
Profile

Coherency

Canyon Evolution - Grand Banks
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Conclusions:

» Slope basin formed as a result of major failure
 This sets up modern canyon configuration (seafloor)
» Canyon locations are determined by the position of older slump
scarps
» Mass failure created accommodation on the upper slope

Two types of canyon on the slope:

1. Those that developed through ridge aggradation (connected to the shelf)
» Canyon axes are predominantly non-depositional

 Ridges record a complex evolution of aggradation and degradation

» These may be composed of thick packages of very thinly-bedded




