Martian Deltas and the

Janok P. Bhattacharya
University of Houston

Outline

- Introduction
- History of Life on Earth
- Martian Deltas -Possible ancient habitat
- Conclusion

Key Questions

-When did life appear on earth?

- Could life have appeared anywhere else in the solar system or universe?
- Where and how to look for evidence of life in the "universe"?
- Need to find habitable environments.

Outline

- Introclecion
- Historyer vile onearth
- Martioniongrisi
- Concusion

Precambrian - Early Earth Time Line

- 4.6 billion years to 544 million years.
- Represents 90% of all of the history of the earth.
- Referred to as the Cryptozoic Eon.
- "hidden life"
- Used to be called Azoic Eon
- "without life"

Early Life

- Single-celled Archea (ancient bacteria) appear in the fossil record very soon after rigid, cool earth crust formed.
-Why so soon?
- Chemicals available
- Water available
- Lots of excess energy to power chemical reactions

Phylogeny of Cells

Experiments on Origin of First Cells

- 1950's and 1960's experiments combined atmospheric gases $\left(\mathrm{NH}_{3}, \mathrm{H}_{2}\right.$, CH_{4}, water, electricity and heat to produced amino acids, formadehyde and cyanide.
- Demonstrated abiotic processs could make precursors of life.
- Further experiments demonstrated that drying and re-wetting of these organic compounds could produce cell-like membranes and simple proteins.
- Led to shallow water "primordial soup" theory.
- But organic compounds in shallow pools would have been instantly destroyed by ultraviolet radiation and oxidation in young, thin atmosphere.
- Life may have evolved far from sunlight in deep oceans around geothermal vents.

Stanley L. Miller, working in the laboratory of Harold C. Urey at the University of Chicago.

Origin of Archaebacteria

- Archaebacteria are the most primitive fossil life forms
- Likely ancestors of all life.
- Primitive Archaebacteria are hyperthermophiles that thrive in boiling water.
- Modern Archaebacteria live in deepsea volcanic vents.
- Many Archaebacteria feed directly on sulfur (chemoautotrophs).
- Archean life probably arose in deep oceans hydrothermal, volcanic vents that would have dotted the ocean floor near rifting zones.
- Vents provide:
- chemical and heat energy,
- abundant chemical and mineral compounds, including sulfur
- protection from oxygen and ultraviolet radiation.

To Higher Plants

Kingdom: Monera

Hydrothermal Origin of Archaebactería

http://www.onr.navy.mil/focus/ocean/habitats/vents2.htm

Modern
 hydrothermal vents support robust biota far from the sun!

Dan Fornari, WHOI

http://www.amnh.org/nationalcenter/expeditions/blacksmokers/smoker2.html

Possible Martian Habitats

- Ancient Hydrothermal vent

http://antwrp.gsfc.nasa.gov/apod/ap970915.html

Fossil Bacteria

- Prokaryotic archaebacteria and eubacteria are dominant.
- Eubacteria form stromatolites (photosynthetic).

Grypania

- More common in upper Archean as shallow water shelves began to form along margins of early continents.
- Archean is the age of pond-scum.
- Molds of individual bacterial cells found in Precambrian cherts.

Used by permission of SEPM © 1968

Filamentous cyanobacteria, 3.46 Ga, Australia

Proterozoic Stromatolites Northwest Territories

Photo from Paul Hoffman in James (1983)

Modern Stromatolites

Formed in hypersaline areas where grazing gastropods can not thrive.
Used to dominate the landscape in Precambrian and Early Cambrian.
http://www.ucmp.berkeley.edu/bacteria/cyanofr.html

Habitable Martian
 Sedimentary Environments?

- Crater lakes
- Long-standing or ephemeral?
- Shallow Seas
- Hydrothermal
- Back to Life Story

Evolution of Eukaryotes: c.1.8 Ga

- Probably began as a symbiotic relationship between different prokaryotes.
- Early eukaryotes "ate" but could not digest a cell which became a mitochondria.
- Plant-like eukaryotic ancestors "ate" chlorophyllbearing cyanobacteria.
- Once eukaryotes evolved, multi-cellular and colonial forms proliferated.

-Nothing more complicated on earth than bacteria for 4 Billion Years!
-First metazoans evolve about 570 million
years ago.

Mesozoic Life

Most of these creatures went extinct -

65 million years ago

Biologic Diversity Through Time

Phanerozoic Diversity Through Time

Non-Anthropoids

Tarsiers

Anthropoids

 Macaques

Which event is unusual in Earth History

- Origin of Archea?
- Inevitable?
- Rise of metazoans?
- Took a long time
- Rise of vertebrates?
- Followed soon after metazoans
- Appearance of language?
- Only happened once, in 1 species in 4.6 billion years!

Which event is unusual in

 Earth History- Origin of Archea? -Inevitable?
-Look for evidence in solar system
- Origin of Language -SETI project

Comparison of Planets

- Because of temperature gradient, outer planets are icy and inner planets are rocky.
- Large planets also retain atmospheric gas because of higher gravity. Rocky Planets

Gas Giants

Searching for habitable environments on Mars: "Follow the water"

- Sedimentary Environments
- Several have been found
- Mars is a very layered planet
- Hydrothermal Environments
- None identified to date (no active thermal events).
- Environments associated with groundwater or ice.
- 2007 Phoenix Mission will sample polar ice.

AFL and Pathways

The following mission sequences were proposed by MSPSG (2003), as part of the Pathways planning process.

Pathway	2009	2011	2013	2016	2018	2020	NOTES
Search for Evidence of Past Life	$\begin{gathered} \text { MSL } \\ \text { to } \\ \text { Low Lat. } \end{gathered}$	Scout	$\begin{aligned} & \text { Ground } \\ & \text { Breaking } \\ & \text { MSR } \end{aligned}$	Scout	Astrobio. Field Lab Deep Drill	Scout	All core missions to mid-latitudes. Mission in '18 driven by MSL results and budget. result and budget.
Explore Hydrothermal Habitats	$\begin{gathered} \text { MSL } \\ \text { to } \\ \text { Hydrothermal } \\ \text { Deposit } \end{gathered}$	Scout	$\begin{gathered} \text { Astrobiology } \\ \text { Field } \\ \text { Laboratory } \end{gathered}$	Scout	Deep Drill	Scout	All core missions sent to active or extinct hydrotherma deposits.
Search for Present Life	$\begin{gathered} \text { MSL } \\ \text { to } \begin{array}{c} \text { Po } \\ \text { or e } \end{array} \\ \text { Active Vent } \end{gathered}$	Scout	Scout	MSR with Rover	Scout	Deep Drill	Missions to modern habitat. Path has highest risk.
Explore Evolution of Mars	$\underset{\substack{\text { MSL } \\ \text { To Lot. } \\ \text { (Netlanders) }}}{ }$	Scout	$\underset{\substack{\text { Ground } \\ \text { Braeking } \\ \text { Msp }}}{ }$	$\begin{aligned} & \text { Aero- } \\ & \text { nomy } \end{aligned}$	Network	Scout	Path rests on proof that Mars was neve wet.

Outline

Intirocluction - Hlistory of Lifée ors Earith - Martian Deltas

Mars
 - MEAN RADIUS: 3jejo km

 Facts- MASS: 0.108 (Earth=1)
- GRAVITY: 0.3B0 (Earth=1)
- ORBIT PERIOD: 686.98 (Earth deys)
- ROTATION PERIOD: 11026 (Earth days)
- ATMOSPHERE: 8 mb (mostly CO_{2})
- 1/100th of Earth's atmosphere!
- TEMPERATURE: 2150K (-65ㄷ)
- It's colder than Canaday
- CONCLUSJON
- Mars is probably presently a dead planet
- H.G. Wells, Orson Welles and Stephen Spielberg are probably wrong.

Dififerenit?

- Mars mey heyve been notier and wetter in early history.
- Escepe velocity of MErs much Jower than Earth; so atmosphere has long since escaped.
- Could life have evelved onearly Mars?
- Evidence for weter compelling.
- Present NASA Missons have found evidence for water thet could indicate potential habitats for lifte.
- "Follow the water"

Martian History

- Noachian: 4.5Ba-3.5Ba
- Heavy bombardment
- Hesperian: 3.5-2.0Ba
- Moderate bombardment

Views of hypothesized watery Mars
Goddard Space Flight Center, 2001

- Amazonian: 2.0Ba - present
- Light bombardment
- Mars is tectonically inactive and has been that way for most of its history.
- Near complete record of Archean.

Relative Ages of the Field Geology on the Moon, Mars and Earth

Searching for Evidence of

 Ancient Warer laicl deposits:Crater Lares

Themis Image Map of Mars

Sunooth Arsazonjass Plains (yourug surface coverecl wits eolian clusit

Mons Olympus

Opportunity Rover Site

Holden Crater
 criensice to finsl "Archears" Seclirsentis)

View Inside Opportunity Crater

Vertically Exaggeratied

Laminae Defined by Variable Grain Size

Medium Grain size

Well Rounded

Mineralogy

- Jarosite
- $\mathrm{KFe}_{3}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{OH})_{6}$
- an uncommon mineral on Earth, which forms in dilute sulfuric acid in ground water.
- Probably formed in an acidic lake or an acidic hot springs environment.
- Hematite "blueberries"
- $\mathrm{Fe}_{2} \mathrm{O}_{3}$

http://apod.gsfc.nasa.gov/apod/ap040405.html
- Small (mm-diameter) concretions.
- Probably formed in groundwater and later weathered out.

Ripple Cross Lamination on Mars

http://www.nasa.gov/multimedia/imagegallery/image_feature_149.html

Ripple Cross Lamination on Mars

Ripple Cross Lamination

Ripples in Meridiani Planum

THEMIS Image Map of Mars

Valles Marineris

 $0^{\text {Opportunity Fover Site }}$
Holden Crater

 conersce to finsl "Arcinean" seclirnents)

Delta-Like Fan on Mars Suggests Ancient Rivers Were Persistent

NASA Asks, 'Did Rivers Once Run on Mars?'

Newly seen details in a fan-shaped apron of debris on Mars may help settle a decades-long debate about whether the planet had long-lasting rivers instead of just brief, intense floods.

Pictures from NASA's Mars Global Surveyor orbiter show eroded ancient deposits of transported sediment long since hardened into interweaving, curved ridges of layered rock

Recent Papers:

Malin, M.C., and Edgett, K.S., 2003
Moore, J.M., Howard, A.D., Dietrich, W.E., and Schenk, P.M., 2004
Lewis, K. and O. Aharonson, 2004
Jerolmack, D.J., D.M. Mohrig, M.T. Zuber and S. Byrne, 2004
Bhattacharya, J.P., Payenberg, T., Lang, S., and Bourke, M., 2005

Area NE Holden (Eberswalde) Crater

Martian Drainage

- How long-lived was drainage basin?
- How was drainage basin carved?
-Rainfall?
-Groundwater sapping?
- Caused by bolide impacts that melt groundwater

Modeling of Martian geomorphology

- Impacted surface.

Modeling of Martian geomorphology

- Fluvial erosion

Modeling of Martian geomorphology

- Eolian reworking

Howard, 2005

Modeling of Martian geomorphology

- Initial

Cratered Surface

Modeling of Martian geomorphology

- Surface after groundwater sapping

Modeling of Martian geomorphology

- Initial surface with eolian reworking

Modeling of Martian geomorphology

- Surface after groundwater sapping

Models versus Reality

Martian Drainage
http://erode.evsc.virginia.edu/mars.htm

Map of Drainage basin

Close-up

Close-up

A Meander Valley

Meandering

 valleys require long-term flows, rather than single catastrophic meltwater

Incised Meander

http://www.arctic.uoguelph.ca/cpe/environments/inland water/rivers/meandering.htm; Photo 2002-319
Gooseneck stream meander, Prince Patrick Island Northwest Territories. Photographer unknown. Reproduced with the permission of the Minister of Public Works and Government Services Canada, 2006 and Courtesy of Natural Resources Canada, Geological Survey of Canada

Lets look at the crater fill!

- Records complex history of fluvial avulsion and channel migration.
- Downstream bifurcation suggests a distributive system.
- No obvious reworking by waves or tides.

Braided to Straight
Trunk
Feeder
Streams

Close-up View of Meanders

- Coarse-grained channel belt deposits are held high.
- Finer-interchannel (floodplain)
sediment is eroded by wind.
- Inverted geomorphology.
- Channel belt surface is severely pockmarked, suggesting an extremely old (Noachian) age.
- Over 3 Ga.

Modern Meandering River

http://darkwing.uoregon.edu/\~millerm/meander.html
Courtesy of Marli Miller © Marli Miller millerm@uoregon.edu

- Channels about 100m wide.
- Cross-cutting relationships.
- Channels wander, meander, and avulse.
- Scroll bars represent "frequent"floods.
- Avulsions represent "infrequent" major-floods.
- How frequent???

- Original straight channel

Martian Delta Lobes

 becomes sinuous and unstable and experiences a classic chute cutoff.- 11 avulsions sweeping across the delta plain.
- How frequent?

Braided to Straight
Trunk
Feeder
Streams

More close-ups

- Older channels are straight and then become more sinuous.
- Younger channels overlie older channels.
- Clear bifurcation downstream, suggesting distributary channels.

Delta versus Fan

Alluvial Fans in Kasei Vallis

- Alluvial fans are common on Mars.
- Numerous, straight to braided shallow channels.
- Strongly fan-shaped.
- Correlate with small drainage areas.

Delta versus Fan

Debris flows, Orson Welles Crater

- Debris flows and landslides are also common on Mars.

Delta versus Fan

- Braided rivers are also common in Martian outwash valleys and northern plains.
- these are very different from singe-thread, meandering channels in the Eberswalde delta.

Delta versus Fan

- Highly organized singlethread, straight to meandering channels.
- Lack of debris flows or sheetflood deposits.
- Lack of braided channels
- indicate lower slopes or lower discharge than might be expected on an alluvial fan.

Estimating the duration of the delta

River
Mississippi
Rhine-Meuse
Saskatchewan
Yellow 600

Po	490

Kosi (Mega-Fan)

Mean Avulsion Period (years)
1400
945
670

28
Data compiled by Bridge, 2003

- Deltaic versus fan numbers considered more likely
- No vegetation on Mars, but floodplain may have been frozen much of the year: stable floodplain?
- Assume avulsion period of 100-500 years?
- 11 avulsions = 1100 to 5500 years for topmost layer.

- Let's look at the distal end to get thickness.
- Examine edge of outcrop to get thickness.
- 150 m thick
- Note lighter deeper layers
- Prodelta bottomsets?
- Evaporites?

1 km

Conclusion

- Long-lived delta.
- Complex, dynamic history
- Countless scroll-bar flood events
- 11 avulsions in top layer
- Feature may have formed over 10,000 to 100,000 years.
- Clearly not due to 1 major bolide-induced catastrophic groundwater melt episode.
- It was probably raining on Mars during the Archean.

Conclusion

- Fluvial deposits and probable delta deposit on Mars.
- Preserve early sedimentary history.
- Candidate for preserving fossil evidence of life (biosignatures).

Meandering Channel on Venus

Feature interpreted to be formed by Carbonate-Sulfate Lavas, that have fluid properties similar to water on earth

Lava Deltas on Venus

- "The universe is not only as queer as you suppose, but it is queerer than you can suppose." (J.B.S. Haldane)

Kargel et al., 1994, Icarus Used by permission of Elsevier © 1994

Acknowledgements

UNIVERSITY of HOUSTON

- Co-authors
- Tobi Payenberg (U. Adelaide)
- Simon Lang (Woodside Petroleum)
- Mary Bourke (Planetary Science Institute)
- Alan Howard (U. Virginia)
- James Reilly (NASA)
- Robert E.Sheriff (UH)

