
Using Second-Order Adjoint State Methods in GPUS to Quantify Resolution on Full Waveform Inversions 
 

Sergio Abreo
1
, Ana Ramirez

1
, and Oscar Mauricio Reyes Torres

1 

 
1
Universidad Industrial de Santander, Santander, Colombia 

 

Abstract 

 

The Hessian matrix in Full Waveform Inversion (FWI) allows quantifying resolution of the velocity model obtained. Although there are 

different ways to compute approximations of the Hessian matrix such as BFGS, Newton, Gauss-Newton and Levenberg-Marquardt; our 

interest is to obtain the exact Hessian matrix. Particularly, we use the Second Order Adjoint State Method (SOASM) to obtain the Hessian 

matrix-vector products. This work make use of Graphical Processing Units (GPUs) giving the inherent parallelism of the algorithm. In order to 

obtain the Hessian matrix-Vector products, it is necessary to perform four wave propagations using a finite differences scheme in time. In such 

scheme, the next layer is computed using information from the current layer and the previous layer. Furthermore, every spatial point of the next 

layer can be computed independently. In this work, this independence is exploited by an architecture with a high degree of parallelism such as 

the GPU. This work presents detailed interpretation and implementation of the SOASM theory to take advantage of GPU's architectures. We 

use a section of the Marmousi velocity model in all the tests. Specifically, the size of the section is 5.25 km x 1.7 km (a grid of 210 x 68 points 

and spatial resolution of 25 m), which produces a Hessian matrix of 14280x14280 points. We compare the performance of two 

implementations: Intel Core I7, and Geforce GTX 860M. The CPU and GPU implementations compute a column of the Hessian matrix in 

28.04 and 0.05956 seconds, respectively. It means a speedup factor of 470x by using the GPU. In our experiment, it is necessary to compute 

14280 columns to obtain the complete Hessian matrix for one shot and one iteration. Assuming a linear performance of both implementations 

and extrapolating the measured times, we find a lower bound for both implementations using five shots per iteration. For the CPU 

implementation, the lower bound is 23,17 days whereas the GPU implementation has a lower bound of 1.18 hours. 

AAPG Datapages/Search and Discovery Article #90255 © 2016 AAPG/SEG International Conference & Exhibition, Barcelona, Spain, April 3-6, 2016




