Determining Percentage Carrying Capacity and Delayed Percentage-Dependency Lags in Palaeontological Time Series, Illustrated Using Benthonic Foraminifera in the Cipero Formation (*Catapsydrax Stainforthi* Zone, Lower Miocene) of Trinidad, Western Tropical Atlantic Ocean

Brent Wilson

Petroleum Geoscience Prgramme, Department of Chemical Engineering, The University of the West Indies, St. Augustine, Trinidad and Tobago

Abstract

The percent carrying capacity K_p is the percentage of a species an area can support while meeting very individual's needs. It is determined from a time series of percentage abundances for species i, where p_{it} is the abundance of that species at time t. The percentage point change in abundance Δp_i between samples is given by $\Delta p_i = p_{it+1} - p_{it}$, where p_{it+1} is the percentage abundance at time (t + 1). The rate of change for each percent r_t is given by $r_t = \Delta pi / p_{it}$.

Linear regression of r_t against p_{it} gives $r_t = r_m - s \cdot p_{it}$, where r_m is the rate of increase in r_t as p_{it} approaches zero, and the slope s shows the strength of intraspecific, interspecific and abiotic interactions for the species investigated. Setting $r_t = 0$, $p_{it} = K_p$ and $r_m - s \cdot K_p = 0$, which gives $K_p = r_m/s$. Nonlinear regression gives $r_t = r_m - s \cdot \ln(p_{it})$, from which $K_p = \exp(r_m / s)$. Delayed percentage-dependency lags (DPDLs) are determined by plotting phase portraits of r_t vs. p_{it} at lags (t + 2), $(t + 3) \dots (t + x)$ and examining the regressions' goodness of fit.

Nonlinear regressions showed better goodness of fit than linear regressions for abundant species in the Lower Miocene Cipero Formation of Trinidad. Values of r_m and s show that *Gyroidinoides* cf. *soldanii* was the most opportunistic species of those examined and *Pullenia bulloides* the least. Species showed different DPDLs, *Stilostomella nuttalli gracillima* and *Cibicidoides mundulus* showing a best fit at (t + 1), *Pleurostomella cubensis* and *Globocassidulina subglobosa* at (t + 2), *Nuttallides umbonifera* at (t + 3), and *G*. cf. *soldanii*, *Oridorsalis umbonatus* and *P. bulloides* at (t + 4). The range of DPDLs argues against simple abiotic control by, say, glacial-interglacial cycles.