
1 

Generalized frames for Gabor operators in seismic imaging 
Michael P. Lamoureux* 
University of Calgary, AB Canada 
mikel@math.ucalgary.ca 

Gary F. Margrave and Peter C. Gibson 
University of Calgary, AB Canada York University, Toronto ON Canada 

Summary 
Gabor methods deal with nonstationarity in seismic signals by decomposing a signal into 
roughly stationary parts, processing each part separately, and assembling the results into a 
global final. In numerical wavefield propagation, a complex geological region is broken up into 
small regions of nearly constant velocity, and the wavefield is propagated through each region 
separately. In frequency slicing, a signal is broken up into separate frequency bands, each 
processed separately, and the results assembled for the final, complete result 

We discuss this decomposition/reassembling as a mathematical windowing procedure that is 
accurately described by the theory of generalized frames. With frame theory, it is shown that a 
collection of local wavefield propagators, combined via a suitable partition of unity, remains a 
stable propagator –– a highly desirable property in numerical simulations. These results apply 
more generally to combinations of linear operators that are useful for many nonstationary 
filtering operations.  

Introduction 
In seismic data processing, we are often in a situation where there are good theories and 
algorithms for numerically simulating a physical process in a homogeneous setting – say, for 
instance, propagating a wave in a uniform velocity field, or computing attenuation in a constant 
Q environment. When the setting becomes more complex – a heterogeneous velocity field, say 
– new theoretical methods and algorithms must be developed to deal with the added
complexity. 

Figure 1: Propagating a wavefield in a complex region: decompose, propagate, re-assemble. 

One way forward is a divide-and-conquer method, where a signal is decomposed into parts, 
each part processed as if in a homogeneous environment, and the individuals parts 
reassembled into one processed whole. This composition might be in different domains – 
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spatial, frequency, or other. Figure 1 shows an example of a spatial decomposition based on 
velocity profiles. A complex region (a salt dome) is broken up into three simpler regions, a wave 
propagates through each of the regions, and is reassembled into a final result.  

Our research group has been examining the mathematics of this process, with the goal of 
formalizing some approaches that have been taken in Gabor techniques, including Gabor 
deconvolution and Gabor wavefield propagation. Key to Gabor methods is the notion of 
windowing a signal into various parts, processing each part, and reassembling. Our view is to 
make a precise mathematical description of these algorithms, leading to a numerical calculus 
that can give useful information about the stability, accuracy and efficiency of these methods. 

Theory and Method 
The mathematical theory is built on linear operators acting on a Hilbert space: roughly speaking, 
the Hilbert space is the collection of signals that we wish to study (seismic data, numerical 
wavefields, and the like) while the linear operators are the operations we do to the signal 
(smooth them, de-noise them, propagate them, migrate them). More basically, the Hilbert space 
is made up of vectors, and the linear operators are matrices acting on those vectors. 

The windowing operation takes a signal and localizes it (in space, in frequency, etc) by 
multiplying the signal with a fixed collection of window functions – Gaussian, boxcars, etc. The 
windows are typically chosen so the corresponding operators Pi have the following property: 

Definition: A sequence  of linear operators on a Hilbert space is called a generalized 

frame if there exist two positive constants  with 

where  is the identity operator.  Generalized frames were introduced by Sun (2006) and are an 

important extension of the notion of frames, pseudo-frames, fusion frames, and other 
generalizations of the idea of basis in linear theory. A special case of a generalized frame 
occurs when the above sum equals the identity operator , in which case the windows form a 

partition of unity (POU).  

From the frame, one defines an analysis operator V as 

its adjoint the synthesis operator 

and the frame operator S as 

. 

The process of decomposing a signal into parts, applying an operator to each part, and 
reassembling, is described succinctly by the formula 

where the  are the operations on each individual piece, and  is the final result obtained by 

putting all the pieces back together. A deep result (Stinespring’s theorem) in linear operator 
theory shows that the result is nicely bounded when the ’s form a generalized frame: 

Theorem: Suppose  form a generalized frame, and  is the operator 

obtained by decomposition/reassembling. Then the norm of  is bounded by the inequality 

, 

where b is the constant in the frame definition. 
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Consequently, for wavefield propagations, using a partition of unity ( ), and stable 

propagators on each region ( ), we can guarantee that the final propagator  is also 

stable. Similarly for frequency slicing, a good choice in partitioning ensures algorithm stability. 

It is also useful to consider non-symmetric partition schemes, where the analysis operators 

may be different from synthesis operators  say. In this case, we have operators of the form 

. 

Less is known about the stability of such operators, although they are heavily used in practice. 

Now that we have this formalism in a mathematical form, our next steps are to create a 
numerical calculus demonstrating how such operators combine, giving estimates for how 
accurately they solve the underlying partial differential equations of the physics involved. 

Examples 
As an example of the decomposition technique, we create a synthetic example of wavefield 
propagation, consisting of a single pulse generating a wavefront that travels through a 
heterogeneous medium. The medium consists of a uniform fast region surrounding a circular 
slow region in the center (Figure 2). Two windows are used, a circular one to isolate the region 
in the center, and its complement to isolate the surrounding region. The wavefront is propagated 
using a time-stepping method, where at each time step, the wavefield is separated into the two 
components (fast region and slow regions), each component is forward propagated by one step 
at the appropriate velocity using a Fourier-based phase propagator, and the two components 
reassembled before the next time step occurs.  
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Figure 2: Three panels of a wavefield propagation experiment. 

Figure 2 shows some snapshots from the simulation.  
In the first panel, we see three square regions: the left square shows the signal in the slow 
region (normalized to be visible in the display, but overall very low amplitude), the middle square 
shows the initial wavefront in the fast region, and the right square shows the combined signal 
(note no contribution from the left square, confirming it was very low amplitude). 
In the second panel, we see the wavefront hit the slow circular region. In the left square, we see 
the flattening and concentration of the wavefront as it crosses into the slow region. In the 
combined region on the right, we see the region is no longer circular. 
In the third panel, in the combined region on the right, we see the slow part of the wavefront has 
fallen far behind the fast part, as expected, with some interesting phenomena linking the two. 

This is a simple example to illustrate the concept of windowing and generalized frames applied 
to numerical wavefield propagation. More realistic examples are discussed in the papers by 
Wards (2008). 

Conclusions 
Nonstationary data processing is a valuable technique for representing physical phenomena in 
heterogeneous environments. The decomposition/process/re-assemble method is accurately 
described by generalized frame theory, a mathematical research area of great interest in 
scientific computation. This approach gives a mathematical formulation of a commonly used 
numerical technique, which in particular is a useful description of nonstationary Gabor methods. 
From this approach, we can demonstration numerical stability of the Gabor wavefield 
propagators and have shown examples of successful modeling of propagation in heterogeneous 
environments. This approach is a first step towards a good mathematical model or numerical 
calculus for solving differential equations using these nonstationary techniques. 
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