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Abstract 
Two petrophysical models for cracked media are investigated in this paper: the Kuster-Toksöz (1974) model 
for randomly oriented cracks and Hudson’s (1981) model for aligned cracks. We consider the effects of 
crack shape, aspect ratio, and crack density using rock properties from several field locations: the Ross Lake 
heavy oil field, Saskatchewan; the Violet Grove, Alberta CO2 injection site; and a Saskatchewan mining 
area. Generally, introducing cracks or inclusions into a rock can significantly decrease its P- and S-wave 
velocities. Inclusion shape has a large influence on the resultant rock properties from the Kuster-Toksöz 
model. Small aspect ratios (thinner cracks) can yield the largest decreases in velocities. Modeling results 
indicate that a 1% porosity, from penny-shaped cracks with an aspect ratio of 0.01, can produce up to 22% 
velocity decreases in Hudson’s model. Similar inclusions create P-velocity decreases of 16% and S-velocity 
decreases of 11% in the Kuster-Toksöz model. 
Introduction 
The Kuster and Toksöz (1974) method calculates the isotropic effective moduli for randomly distributed 
inclusions in a rock based on a long-wavelength, first-order scattering theory. The Hudson (1981) model 
uses scattering of the mean wave field in an elastic solid with thin, penny-shaped cracks or inclusions which 
are aligned in a specific direction. The effective moduli can be calculated by applying first- and second-
order corrections to the isotropic background moduli. The overall effect of the aligned cracks is anisotropic. 

Both models assume no fluid flow between spaces, thus they simulate high-frequency, saturated-rock 
behavior. At low frequencies, when there is time for wave-induced pore pressure increments to flow and 
equilibrate, dry-rock moduli should first be calculated from the two models. Then Gassmann fluid 
substitution for isotropic media and Brown and Korringa’s (1975) fluid substitution for anisotropic media 
could be used to predict saturated rock properties. 
Rock properties for numerical test 

Several rock types are selected to provide values for numerical tests: a Cretaceous-aged, high-porosity 
(about 30%) channel sand and a tight sand from the Ross Lake heavy oil field, another Cretaceous-aged 
low-porosity (about 12%) sandstone from Violet Grove, Alberta, and a Devonian carbonate and a shale 
from a potash mining area in Saskatchewan. These rock properties are listed in Table 1. The porous channel 
sand and tight sand from Ross Lake area were used for various parameter tests with the Kuster-Toksöz 
model and Hudson’s model. For this modeling, the Hashin-Shtrikman bounds were also calculated for 
comparison. The Hashin-Shtrikman bounds are the narrowest constraints when the geometries of the 
constituents are not known. Cracked rock properties are also calculated for all the chosen rocks assuming 
penny-shaped cracks – with a fractional crack porosity of 0.01 and an aspect ratio 0.01. For all the tests, the 
void spaces are filled with brine at a density of 1.1 g/cm3 and velocity of 1430 m/s. 
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Kuster-Toksöz Model 
Figures 1 and 2 display the results of randomly 
oriented inclusions in sands of the Ross Lake heavy 
oil field as calculated by the Kuster-Toksöz model. 
Dry moduli were calculated first by supposing that 
both bulk and shear modulus of the inclusions are 0, 
then the Gassmann equation was used to calculate 
the effective moduli when the void space is filled by 
brine. As shown in figure 1, we find that the 
velocities decrease significantly, depending on the 
inclusion shape. Smaller aspect ratio yields a larger 
decrease of velocities. The velocities of the sphere  

Table 1: Rock properties for numerical tests of cracked media.

Ross Lake 
Violet 
Grove 

Sask. Mining 

Lithology Sandstone Sandstone Sandstone Carbonate Shale

Depth 1148m 1160m 1605m 970m 1006m

Vp (m/s) 3026 5689 3778 5538 3765 

Vs (m/s) 1721 3413 2237 2954 2074 

Density 
(g/cc) 

2.133 2.63 2.42 2695 2326 

Porosity 30% 2% 12% 3% <5%

inclusion shape are coincident with the Hashin-Shtrikman upper bound.  The effective velocities of the 
small aspect ratio shapes approach the Hashin-Shtrikman lower bound at a smaller volume fraction of pores. 
Except for the sphere shape inclusions, all other inclusion shapes have a limitation on volume fraction 
values for reasonable effective velocity values. The concentration value limitations decrease with aspect 
ratio. For needle shape inclusions, there is no dependence on aspect ratio. The results are valid for a large 
range of concentration values. 
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A test of the α/c value with different c values (0.01, 0.05, and 0.25) was also carried out and the results are 
shown in Figure 2. The velocity values were normalized by the Hashin-Shtrikman upper and lower bound. 
For various c values, both P- and S-velocity indicate relatively stable minimum α/c values, approximately 
0.2 (0.4 from moduli calculation results). However, for penny-shaped inclusions, the maximum α/c values 
for reasonable velocities change drastically with respect to the crack concentration value c. Small c values 
will still have reasonable effective velocities for large α/c values. The P-velocities have less limitation on 
the α/c values than S-velocities. For spheroid inclusions, there is no upper limitation on the α/c value, but 
with increasing c value, the effective velocities approach upper bound quickly.  

Hudson’s model 
Figure 3 shows the results from Hudson’s model for penny cracks with three aspect ratios (α): 0.002, 0.01, 
and 0.05. It displays the modeled P- and S-velocity variations with crack density. For the cracks aligned in 
one direction, it will show transverse anisotropy with respect to the axis along the normal to the cracks. The 
P-velocity drops very little when the waves travel along crack plane (Vp0), but will display a distinct  

a b 
Figure 1. Variation of effective P- (top) and 
shear (bottom) velocities with the volume 
concentration of inclusions for several crack 
shapes from the Kuster-Toksöz model (a: Ross 
Lake porous channel sand; b: Ross Lake tight 
sand).  All the velocity values are normalized to 
the range from fluid to uncracked rock 
velocities. The aspect ratio value for the oblate 
spheroid shape is 0.1. For the penny shapes, an 
aspect ratio of 0.1 (noted as penny KTB) and 
0.05 (noted as penny KTB2) are used. KT: the 
results from the Kuster-Toksöz formula for 
sphere and oblate-spheroid inclusions; KTB: the 
results from generalized Kuster-Toksöz model 
by Berryman. The green dash-dot lines are 
Hashin-Shtrikman bounds. 
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Figure 2: Variation of effective P- (top) and shear (bottom) velocities (from the Kuster-Toksöz model) with α/c value (aspect ratio/volume 
concentration) (a: Ross Lake porous channel sand; b: Ross Lake tight sand).  All the values are normalized to the range of Hashin-Shtrikman 
bounds. 

decrease when the wave travels normally to the cracks (Vp90). For SV waves, the velocity will change the 
same amount whether it travels normal to the cracks or across the crack plane. Cracks with aspect ratio 0.05 
were also modeled by the Kuster-Toksöz model for penny-shaped cracks. The effective P velocities from 
the Kuster-Toksöz model are between the P velocities from Hudson’s model along the crack normal and 
crack plane. For given aspect ratio cracks, when the crack density exceeds a limit, the velocities will display 
an abnormal increase with crack density value, especially for Vs. This is about 0.05 (a 0.1% crack porosity 
equivalent) for cracks with aspect ratio 0.002 and 0.2 (around 1% crack porosity) for cracks with aspect 
ratio 0.01. From the modeling results for tight sand from Ross Lake (Figure 3b), we find that the P-velocity 
variations with crack density show an apparent dependence on rock properties of the uncracked rock. While 
the S-velocity displays a similar variation with crack density. However, reasonable crack density ranges for 
each aspect ratio are still the same due to the similar variation of S-velocity with crack density. 
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Figure 3: Variation of effective velocities of cracked rock from Hudson’s model with crack density (Vp0: Vp along crack plane; Vp90: Vp 
normally to the cracks). a: Ross Lake porous channel sand; b: Ross Lake tight sand. The minimum and maximum velocity values in the plot are 
those of fluid and isotropic uncracked rock respectively. KTB denotes the effective velocities from Kuster- Toksöz model. 

Assuming a 1% crack porosity induced by penny-shaped cracks with aspect ratio 0.01, the effective P- and 
S-velocities from Kuster-Toksöz and Hudson’s model are plotted in Figure 4 for: 1) the Ross Lake porous 

a b 

a b 
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sand, 2) Saskatchewan mining shale, 3) Violet Grove 
sand, 4) Saskatchewan mining carbonate, and 5) Ross 
Lake tight sand. We find: 

1. These cracks can produce up to 22% velocity
decreases in Hudson’s model, and P-velocity 
decreases of 16% and S-velocity decreases of 11% in 
the Kuster-Toksöz model;  

2. The percentage changes of S-velocity induced by
the cracks are quite similar for each rock from both 
models; 

3. The percentage changes of P-velocity along
crack planes are very similar from Hudson’s method 
without or with fluid substitution; 

4. The percentage changes of P-velocity (P-velocity
along the crack normal for Hudson’s model results) 
are consistent with the values of uncracked rocks 
from Kuster-Toksöz model and Hudson’s method 
without fluid substitution. 
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Figure 4: Modeled effective P- and shear velocities for selected 
reservoir rocks (rock samples 1 through 5) assuming penny shape 
cracks with aspect ratios 0.01 and a crack density 0.01. KT: 
velocities from Kuster-Toksöz model. Hudson 1: velocities along 
the crack plane; Hudson 2: velocities along crack normal; Hudson2 
2: velocities along crack normal without fluid substitution. The plots 
in the right are percentage changes with respect to the original 
velocity. 

Conclusions 
Two petrophysical models (from Kuster-Toksöz and Hudson) for cracked media are discussed. From the 
results of the Kuster-Toksöz model, we find that the changes in rock properties depend largely on the 
inclusion shape. For both spheroid and penny shape inclusions, α/c values should not be smaller than about 
0.4 (equivalent to c<2.5α). As for penny shape inclusions, the valid maximum α/c values change drastically 
with respect to the concentration value c. For Hudson’s model, smaller aspect ratio cracks have a smaller 
valid crack density range, especially for Vs.  

The modeling results for several rocks (assuming 1% crack porosity, 0.01 aspect ratio penny-shaped cracks) 
indicate: these cracks can produce up to 22% velocity decreases in Hudson’s model, and P-velocity 
decreases of 16% and S-velocity decreases of 11% in the Kuster-Toksöz model; the percentage changes of 
S-velocity from both models and P-velocity along crack planes from Hudson’s method have almost no 
dependence on uncracked rock properties; while the percentage changes of P-velocity (P-velocity along 
crack normal for Hudson’s model results) are consistent with the values of uncracked rocks for Kuster-
Toksöz model and Hudson’s method without fluid substitution.  
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