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Summary 
Prestack random-noise suppression is an 
important but inadequately solved problem in land 
seismic processing. Two previously described 
techniques - eigenimage and Cadzow filtering - 
both use matrix-rank reduction on constant-
frequency slices. These can be combined into a 
novel hybrid method with properties from both, 
forming a general class of noise suppressors that 
is powerful, versatile, and can be applied in any 
number of spatial dimensions. A companion paper 
in this conference shows how to apply these 
techniques to prestack data and gives examples. 

Introduction 
Some reasons for performing prestack random 
noise suppression are to: 

- Reveal signal in noisy areas. 
- Improve AVO and azimuthal analysis. 
- Improve multiple attenuation, velocity 

analysis, and statics correction. 

Such a noise suppressor should have the 
following properties: 

- The strength can be varied easily, with the 
ability to make it extremely powerful. 

- Handles non-uniformly spaced shooting. 
- Handles both 2D and 3D data. 

- Handles both plains and structured data. 
- Preserves AVO and azimuthal effects. 
- Preserves multiples. 

Here we describe two existing methods 
(eigenimage and Cadzow filtering), both of which 
perform matrix-rank reduction on constant-
frequency slices. We show how they can be 
hybridized to form a more general and useful 
class of methods with attributes of both. The 
companion paper "Prestack Rank-Reduction-
Based Noise Suppression: Practise" (Burroughs 
and Trickett, 2009) demonstrate these methods 
them on real data. 

These methods all use a noise-suppression strategy 
called "matrix rank reduction" (see, for example, 
Trickett 2003), also called truncated singular-value 
decomposition, principal-component analysis, 
subspace filtering, and many other names. The 
singular value decomposition, described in the 
previous reference, allows one to decompose a p-
by-p matrix A into p matrices of rank one, called 
weighted eigenimages: 

21221 ,... +≥+++= iip IIIIIA

A rank-k approximation to matrix A can be found 
by summing the first k weighted eigenimages: 
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Suppose we are given a multi-dimensional grid of 
traces. The general method is as follows: 

Take the Discrete Fourier Transform (DFT) of 
each trace. 

For each frequency within the signal band... 
         { 

1. Place complex trace values for this
frequency into a matrix A (somehow).

2. Reduce the matrix to rank k.

3. Recover each trace value from the
matrix by averaging all elements
where that value was originally placed.

         } 
Take the inverse DFT of each trace. 

The only difference between the various 
techniques discussed here is how the matrix is 
formed in step 1.  

The filter is made stronger by increasing the size 
of the trace grid, or decreasing the rank k, or both. 

In practise the data set is not filtered in one piece, 
but rather "tiled" into overlapping blocks in both 
space and time, just as one would do for, say, f-x 
prediction. These tiles are noise suppressed 
separately and then recombined into a single data 
set by tapering and summing. 

Eigenimage Filtering 
Ulrych, et al (1999) described seismic 
applications for eigenimage filtering. Trickett 
(2003) applied it in the f-xy domain as follows: 

Suppose have an n-by-n grid of traces. To 
simplify the discussion we assume square grids, 
but rectangular grids work just as well. For a 
given frequency, let the complex values from a 
constant-frequency slice of this grid have values 
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F-xy eigenimage filtering was shown (Trickett, 
2003; Grimm, et al, 2003) to have the following 
properties: 

Exactness Property: If the grid of seismic traces 
is noiseless and is the sum of no more than k 
plane waves then f-xy eigenimage filtering with 
rank k does nothing to it. 

Shooting Property: If a grid of seismic traces is 
noiseless and contains no more than k dips when 
viewed in the CMP domain then f-xy eigenimage 
filtering with rank k does nothing when the x-y 
coordinates represent common source and 
receiver. 

Statics Property: F-xy eigenimage filtering is 
independent of x- and y-consistent statics. 

Filtering Property: If a noiseless seismic section 
contains no more than k dips, and then has x- and 
y-consistent filters applied, then f-xy eigenimage 
filtering with rank k does nothing. 

None of these properties hold when eigenimage 
filtering is applied in the time domain, which is 
why the frequency domain is much preferred. 

F-xy eigenimage filtering would appear to be 
ideal for prestack noise suppression, particularly 
when the x and y coordinates represent source and 
receiver. The exactness property suggests that it 
can handle dipping events as easily as flat events. 
The shooting property does not require that 
sources and receivers be evenly spaced - indeed 
they can be randomly positioned. The statics 
property suggests that this method can be applied 
before surface-consistent statics, and the filtering 
property suggests that it might be applied before 
surface-consistent deconvolution.  

But eigenimage filtering has some problems. 
First, it can only easily be applied in two 
dimensions. Three-dimensional eigenimage is 
best done using multilinear rather than linear 
algebra - that is to say, performing rank reduction 
on tensors rather than matrices (De Lathauwer, et 
al, 2000; Wang, 2007). Multilinear algebra theory 
is not as elegant or straightforward as linear 
algebra, and we would generally like to avoid it.  
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Second, f-xy eigenimage is rather weak. To make 
it stronger one must often reduce the rank to the 
point of removing signal. 

Cadzow Filtering 
Suppose we have a one-dimensional series of n 
traces whose values along a constant-frequency 
slice are .1, nici K=  Perform f-x Cadzow filtering 
(Cadzow, 1988; Trickett, 2002) by setting 
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Variable m is usually set to half of n, making the 
matrix as square as possible. This is a Hankel 
matrix, meaning that it is constant along each 
antidiagonal. The exactness property holds: 

If a regularly spaced sequence of noiseless traces 
is the sum of no more than k distinct dips then f-x 
Cadzow filtering with rank k does nothing to it. 

Trickett (2008) extended Cadzow filtering to two 
spatial dimensions by forming a Hankel matrix of 
Hankel matrices 
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Cadzow filtering can be extended to any number 
of spatial dimensions. Three dimensions, for 
example, is handled by forming a Hankel matrix 
of Hankel matrices of Hankel matrices.  

Cadzow filtering has some advantages over 
eigenimage. It can used in any number of spatial 
dimensions, as opposed to just two for 
eigenimage. It can also be made far stronger than 
eigenimage while still preserving conflicting dips. 

As a rough rule of thumb, Cadzow filtering gives 
a four-times improvement in signal-to-noise ratio 
with each additional spatial dimension, assuming 
typical parameters are used. Thus higher-
dimensional Cadzow filtering is of great interest 
for very noisy areas. 

The exactness property holds for any number of 
dimensions. Cadzow filtering does not, however, 
have the shooting property. In particular, if the 
spatial coordinates represent source and receiver 
then sources and receivers should be uniformly 
spaced, a problem for land surveys. Eigenimage 
and Cadzow properties are summarized here: 

Eigenimage Cadzow

Exactness Property Yes Yes 

Shooting Property Yes No 

Statics Property Yes No 

Filtering Property Yes No 

Strength Weak Strong

# Spatial Dimensions 2 Any 

Hybrid Filtering 
We can hybridize eigenimage and Cadzow 
filtering to derive a new type of filter that is better 
suited than either for prestack applications. There 
are at least two approaches we can take. The first 
is to append matrices together into larger 
matrices. The second is to create higher-order 
tensors. We shall take the first approach since it 
avoids multilinear rank reduction. The second 
approach, however, is likely the more powerful 
one, and may be the subject of future research.  

Suppose we have two spatial dimensions, and 
wish to treat the first dimension as eigenimage 
and the second as Cadzow. Set 

[ ]nHHHA L21=

where iH are the Hankel matrices from before. 
Since the Hankel matrices are symmetric or 
nearly so, it makes little difference if we append 
the Hankel matrices horizontally (as we've done 
here) or vertically. It  would make a difference for 
strongly rectangular Hankel matrices. 
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If we have three spatial dimenions and wish to 
treat the first dimension as eigenimage and the 
other two as Cadzow then replace the Hankel 
matrices above with Hankel matrices of Hankel 
matrices. If we wish to treat two dimensions as 
eigenimage and one as Cadzow, set 
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where ji,H  is the Hankel matrix for the i'th index 
of the first dimension and j'th index of the second. 

In four-spatial-dimensional filtering where two 
dimensions are eigenimage and two are Cadzow, 

ji,H  is a Hankel matrix of Hankel matrices. 

There are countless variations, so we propose the 
following notation for these hybrid filters:  

2E Eigenimage filtering in two 
spatial dimensions 

432 C,C,CC, Cadzow filtering in one, two, 
three, and four spatial dimensions 

EC One dimension eigenimage,  one 
dimension Cadzow 

2EC One dimension eigenimage,   two 
dimensions Cadzow 

CE2 Two dimensions eigenimage, one 
dimension Cadzow 

3EC  One dimension eigenimage, three 
dimensions Cadzow 

And so on, the only limitation being that we can 
not have more than two eigenimage dimensions if 
we wish to avoid multilinear algebra. 

The exactness property holds for these filters. 
Those dimensions that are treated as eigenimage 
have all the properties of eigenimage filtering. If 
one of the dimensions, for example, represents 
common source and is treated as eigenimage then 
we do not require source locations to be uniformly 
spaced and can tolerate source-consistent statics. 

Those dimensions treated as Cadzow, however, 
should be uniformly spaced and should not have 
large statics. 

Hybrid filters fall between Cadzow and 
eigenimage filtering in strength. For instance, 2C  
filtering is stronger than EC  which is stronger 
than 2E . 

Conclusions 

We have presented a new class of  random noise 
suppression filters that work in any number of 
spatial dimensions. Individual dimensions can be 
customized to allow for statics or unequal spacing 
(eigenimage) or to maximize the strength of the 
overall filter (Cadzow).  

These filters are well suited for removing noise 
from prestack seismic traces. The companion paper 
following shows how to apply them, with 
examples on real data. 
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