Lidar Intensity as a Remote Sensor of Rock Properties: An Investigation of the Sego Sandstone, Book Cliffs, Utah

Darrin Burton and Lesli J. Wood
Bureau of Economic Geology, The University of Texas at Austin, Austin, TX.

Terrestrial lidar (light detection and ranging) has become a popular tool for outcrop investigation and modeling. Lidar units can collect a spatially accurate ‘cloud’ of points approximating the shape of the outcrops surface. In addition to providing detailed spatial data, lidar scanners record the intensity: the power of the backscattered signal relative to the power of the emitted signal. Intensity has been used as a remote sensing and surface classification tool in archeology, forestry, glaciology, volcanology, urban development, and other fields of study. However, lidar-based outcrop studies have largely ignored intensity data, focusing primarily on x, y, and z information. Experiments were conducted to test the relationship between lidar intensity and clastic lithology by scanning core of the Sego Sandstone, from the Book Cliffs of Utah. Intensity shows a good log-linear correlation to shale (r= -.84) and sand (r= .88) weight percent. This relationship can be used on outcrop to estimate v-shale, net-to-gross, and even simulate gamma-ray logs in relatively unweathered outcrops.