3-D P-velocity model of the mantle of the Black Sea and South-Caspian basin

I. Bugaenko, T. Tsvetkova, L. Shumlyanska, and L. Zaiets

Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv

We used the method of the Taylor’s approximation (proposed by V.S. Geyko) for building 3-d P-velocity model of the mantle to the depth 2500 km. The data of the P-waves first-arrival time to the station of the International Seismological Centre since 1964 to 2002 are used as the primary data.

Upper mantle beneath the Black Sea is low-velocity. The upper parts of the upper mantle beneath the Black Sea are characterized by its division into three parts, namely: two low-velocity region, corresponding to the mantle under the Western Black Sea and the East Black Sea basins and the high-velocity zone of partition between them. Transition zone of the upper mantle is high-velocity, but with a difference in the configuration of high-velocity layers under the Western Black Sea and the East Black Sea basins (preserved partition zone). In the mantle beneath the Black Sea is not allocated division zone-I, with the exception of the northern and southern shelves. Middle mantle under the Black Sea is quasihomogeneous. The most interesting under the Black Sea is the low-velocity anomaly at the depth 1500-2500 km with the residuals up to $\delta=-0.175$ km/sec. (coordinates: 42°-44°NL & 34°-36°EL) under the zone of partition, which observed in upper parts of the upper mantle.

Upper mantle beneath the South Caspian basin is characterized by alternating high-velocity (to $\delta=0.015$ km/sec.), low-velocity (to $\delta=-0.075$ km/sec.) and again high-velocity (to $\delta=-0.025$ km/sec.) layers. These layers have a slope from the south (where, for example, the depth of bottom of first high-velocity layer upper mantle beneath the southern part of Elburs depression is just over 50 km) to the northerly direction (the depth of the bottom of the first high-velocity layer in the northern part of South-Absheron depression is 280 km). The transitional zone of the upper mantle beneath the South Caspian basin is characterized by low-velocity region at the depths of 425-625 km (to $\delta=-0.3$ km/sec.). Division zone-I is absent. Almost quasihomogeneous (in general), the middle mantle under the South Caspian basin has a high-velocity area to the depth 1325 km (to $\delta=0.075$ km/sec.). The division zone-II is high-velocity under the South Caspian basin, and studied part of the lower mantle – low-velocity.
Very interesting is the spread from the Caspian Sea three oblique high-velocity layers: 1) first layer extending westwards from western coast Caspian Sea (along the south margin of the Karpinsky Swell under the Terek-Kum Depression) to the zone of partition Black Sea at the depth down to 400 km; 2) second layer extends westwards from the Kara-Bogaz under Middle Caspian and Great Caucasus to the Rioni Depression at the depth down to 400 km; 3) third layer extends to the southwest direct from the Arkhangelsk Peninsula under the Great Caucasus up to the eastern part of the Adjaro-Trialet zone to the depth down to 150 km.