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Abstract 

Incomplete and sparse information can introduce a high level of risk for oil exploration 
and development projects. “Expert” systems developed and used in several disciplines and 
industries have demonstrated beneficial results in modeling the decision making process of 
knowledgeable experts. A state-of-the-art exploration “expert” tool using a computerized data 
base and computer maps generated by neural networks, is being developed using fuzzy logic, a 
relatively new mathematical treatment of imprecise or non-explicit parameters. 

Analysis to date includes generation of regional scale maps of aeromagnetic, gravity, 
structure, thickness, and production data for the target Brushy Canyon Formation in the 
Delaware Basin, New Mexico. For each regional scale map, data attributes were also computed 
to look for more subtle trends. These attributes include directional first and second derivatives, 
dip azimuth and magnitude, and azimuth and magnitude of curvature. These data were mapped 
and gridded to a 40 acre spacing, the current well spacing for Delaware pools in New Mexico, 
and compared to average monthly production in the first year for Delaware Brushy Canyon 
wells. The geophysical and geologic data covers 60478 bins (3780 square miles), of which 2434 
of these bins have oil, gas and water production data. Using a new fuzzy ranking tool each data 
attribute was ranked for its ability to predict production potential at these well locations. The 
highest ranked attributes were gravity dip-azimuth, second latitude derivative of thickness, 
longitude derivative of gravity, and longitude derivative of structure. These attributes were used 
to generate a production potential map for the Delaware basin, using neural networks and expert 
systems, at the scale of 40 acres. 

Expert systems operate by developing rule sets that can be used to answer questions 
related to the problem at hand, in this case prospect evaluation. Since prospect generation data 
often contains non-crisp data, such as “low porosity” or “high on structure”, the expert system 
will necessarily allow fuzzy inputs. The approach taken is to accumulate all available public 
domain data and incorporate them into online databases, which can be accessed by the expert 
system. The primary goal after development of the production potential map is to teach the 
expert system to add or detract to each prospect’s estimate of risk, in a fashion similar to that 
employed by human explorationists. Such a map would be a useful tool for evaluating the 
potential of infill, step out, and wildcat wells in the Delaware basin, both at reservoir and 
regional scales. This paper discusses the development of this production potential map and 
initial rules development for the expert system. 
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Introduction 
Expert systems are computer programs that are designed to make decisions similar to the 

manner in which a human expert would. In the past expert systems have been primarily 
restricted to medical and industrial applications, but with DOE support an expert system to 
prospect for oil is now being developed to automate and accelerate prospect development for the 
Brushy Canyon formation in the Delaware basin. Expert systems operate by developing rule sets 
that can be used to answer questions related to the problem at hand, in this case prospect 
evaluation. Since prospect generation data often contains non-crisp data, such as “low porosity” 
or “high on structure”, the expert system will necessarily allow fuzzy inputs. The approach taken 
is to accumulate all available public domain data and incorporate them into online databases, 
which can be accessed by the expert system. A primary goal was to develop a map of production 
potential based on available regional data from which the expert system could add or detract to 
each prospects estimate of risk. 

Regional Data 
A key component to the success of this study is the analysis of the regional data to 

provide baseline data to correlate with production potential; this also provides a source of 
heuristic rules for the expert system. Four major categories of regional data were selected and 
compiled. Regional gravity surveys cover the entire area of the Delaware basin and have been 
compiled with an accuracy of a few milligals. The survey measurements are on the order of a 
few thousand feet apart, but sample point locations are highly variable as gravity is measured in 
easily benchmarked locations, such as along roadways. Gravity measures variations in density 
and tends to highlight large-scale regional structures at basement depths and if structure has an 
impact on maturation, migration or trapping of hydrocarbons in the basin useful information can 
be obtained. Regional Aeromagnetic data, primarily collected via over-flights with 1 mile 
spacing re-gridded to 0.296 miles longitude and 0.346 miles latitude, also exists for the region. 
Aeromagnetic data highlights contrasts in the magnetic susceptibility between rocks and can help 
indicate basement blocks, large-scale faults, and possible large-scale alluvial deposits. The 
structure of the lower Brushy Canyon was picked on 700 wells in the basin covering a 
geographically large area’. Large-scale maps of these attributes covering the region were 
constructed with a kriging algorithm. 

Structure can play more than one role in trapping and migration of hydrocarbons and two 
potentially helpful attributes for this study are structural highs, and flexures, which while 
commonly induce fracturing along the flanks of structures may also help locate subsurface faults 
which can compartmentalize fields, or allow preferential migration paths for hydrocarbons and 
water. Finally, the wells used to compute structure were used to generate an isopach map for the 
Brushy Canyon in the region(Broa&ead and Justman, 2000). Thickness may indicate areas of 
greater potential production and also can indicate pinch-outs and other nonstructural features that 
may form hydrocarbon migration pathways or traps. 

A number of attributes were calculated from these 4 principal data types. These attributes 
are 1”’ and 2nd derivatives along latitude and longitude; dip azimuth and magnitudes; and 
curvature azimuths and magnitudes. These values were computed to expose finer scale features 
in the basic data types that might be useful for correlating back to a production indicator. A total 
of 36 maps were generated using the Zmap tool of Landmark Graphics Release 98 plus 
interpretation package (Table 1). 

Each of these maps was gridded at a scale of 1320-t? (quarter section) because that is the 
regulatory spacing for wells in the Brushy Canyon in New Mexico. The gridded data was 
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exported and loaded into the project production database. Our current production database is a 
subset of the Onguard database (courtesy of the SW PTTC) containing production information 
on all New Mexico wells. In this database we have also identified Brushy Canyon wells and 
using grid locations from the Zmap maps we were able to correlate producing wells with grid 
numbers. This essentially allows regressions to be formed using the production data as control 
points (training and testing) and the attribute data as variables. Any regression formed in this 
manner could then be used to predict production in all other 60,478 40-ac bins in the basin. 

Fuzzy Ranking 
There are two primary considerations when trying to form regressions: the first involves 

the quality of the data you are attempting to predict with the generated regression model; the 
second deals with the choice of attributes or variables that will be used in forming the regression 
model. An optional consideration is the application of linear models (least squares regression) or 
more complicated non-linear solutions such as polynomial regressions or neural networks. An 
average of the first 12 producing months oil production at each well was chosen as the data to be 
modeled. PredictOnline (http://ford.nmt.edu/PredictOnline6/index. html) is an in-house devloped 
neural network package that is available online and is based on the fast-converging, feed- 
forward, back-propagation conjugate gradient algorithm(Moller, 1993). A back-propagation 
feed-forward algorithm such as the conjugate gradient algorithm used here is “trained” using 
known inputs and outputs in an iterative fashion, with weights being sequentially adjusted until 
the desired tit (if possible) is achieved. 

There are a number of ways to determine which of a set of inputs (attributes) would best 
be used to form a regression for a particular output. Simply crossplotting each input against the 
output can give an indication of the quality of linear or multiple linear regression models that 
could be formed. For more complicated relationships found in many oil field problems such 
simple tools often do not provide adequate solutions. 

In previous studies we have used a single stage fuzzy-ranking algorithm to select inputs 
best suited for predicting the desired output(Balch et al., 1999; Balch et al., 2000; Hart et al., 
2000; and Weiss, 2000-Z). The algorithm statistically determines how well a particular input 
could resolve a particular output with respect to any number of other inputs using fuzzy curve 
analysis. 

To illustrate the technique a simple example is given. Consider a set of random numbers 
in the range {O,l } using x={xi}, i=l 2 , ,. . .,99, and xi=O.Ol *i, and plot each value (yt= 
Random(xi)). Next add a simple trend to the random data (yi=(x$‘O.S+Random (xi)) and plot 
those values. For each data (xi, yi) a “fuzzy” membership function is defined using the following 
relationship: 

Fi(x) = exp( -(Xi b X))2)* yi 

Sample fuzzy membership functions are shown in Figures. 1 and 2. Here, b=O.l, since b is 
typically taken as about 10% of the length of the input interval of xi. A fuzzy curve was 
constructed using a summation of all individual fuzzy membership functions in (xi, yi), and this 
final curve can prioritize a set of inputs for linear or non-linear regressions. The fuzzy curve 
function is defined below: 
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2F,(x)*~i 

FC(x) = i=’ ,~ 
C Fi.Cx> 
i=l 

Where N is the size of the data set or the total number of fuzzy membership functions. Figure 3 
shows the curves for the data sets shown in Figs. 1 and 2. This simple example illustrates the 
ability of the fuzzy ranking approach to screen apparently random data for obscure trends such as 
the correlation between seismic attributes and reservoir properties4. 

More information is needed however to advance this analysis from the art of reading 
these fuzzy curves to a more robust and systematic elimination of less useful inputs, not only 
allowing selection of optimal inputs but also to allow an estimate of data quality and uniqueness. 
As such, we developed software based on a two-stage fuzzy ranking (Weiss, 2000-2). The two- 
stage fuzzy ranking (TSFR) has two improvements: 1) Reduction of input variable space through 
random characterization and 2) setting hard rules for selection of best-input variables. TSFR 
introduces second stage fuzzy curves, with first and second stage fuzzy surfaces to select the 
most important and independent input variables for modeling, while removing the input variables 
that show random characteristics. 

TSFR uses first and second stage fuzzy curves to generate the fuzzy curve performance 
index (PC): 

With the addition of a known random variable into the input space the FCPI is normalized by the 
random Pc,a to produce the normalized fuzzy curve performance index (Pc,,v): 

P P, 
c,N =- 

P C,R 

The input variable with the smallest Pc,~ value is the most important variable. Input variables 
with Pc.m greater than 1 .O are eliminated from the selection process. Once the most important 
variable is determined fuzzy surface analysis is performed. 

Analogously, for fuzzy surfaces there exists a performance index using the first and 
second stage fuzzy surfaces (P$): 

P 
P, = sragel 

1 + PsrugcZ 
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A similar normalization procedure produces the normalized fuzzy surface performance index 
(Ps,Nb 

P, & =- , P s,R 
The input variable with the smallest P s,N is the next most important and independent. In an 
iterative process, the input variables with PS,~‘s above 1 .O are eliminated from selection process. 
The fuzzy surface analysis continues until no input variables remain. Therefore, Two-stage fuzzy 
ranking can be used to automatically and quickly identify the important and independent inputs 
needed to model the system of interest. 

For this study each of the 36 data and data attributes calculated and loaded into the database were 
analyzed using the second stage fuzzy ranking algorithm. Each data attribute was ranked for its 
ability to predict production potential at these well locations. The four best attributes selected 
were dip azimuth of gravity, second latitude derivative of thickness, longitude derivative of 
gravity, and longitude derivative of structure (Table 2). 

Multivariate Regressions 
Using PredictOnline, our in-house web driven neural network, a regression relationship 

was formed between these four inputs and the average first month’s production. It is best when 
forming regressions to hold out a randomly selected sample of the data for testing. This data is 
used for testing the ability of the regression to accurately predict data not used in forming the 
regression. For this study a 520 well subset of the available 2434 wells in the basin was used to 
train the neural network. These 520 wells were selected as they were verified to have produced 
only from lower Brushy Canyon, and because they included dryholes in which a completion 4 
effort was made to generate production, as well as being distributed fairly evenly across the 
basin. Of these 520 wells 466 were used to form the regression while 54 were held out for blind 
testing. A 4-l O-l O-l O- 1 Neural network with 250 weights provided an excellent solution with a 2 
to 1 ratio of data to weights and CC=O.90 for the training data and CC=O.81 for the blind test 
data. BOPM (average barrels of oil per month expected in first year) at all 6047%40ac bins in the 
basin were predicted using this model, including nearly 2000 other wells with Brushy Canyon 
production. Training and testing crossplots can be found in Figures 4 and 5, respectively. 

Results 
The calculated BOPM for each 40-ac bin in the New Mexico portion of the Delaware 

basin, Brushy Canyon formation was used to generate a map (Figure 6) to highlight potential 
areas of exploration. Neural network analysis necessarily results in a non-crisp solution, and 
examination of the cross-plots in figures 4 and 5 demonstrate that there is some possible error in 
the maps, though in general the high cross correlation means the overall fit is good. Therefore it 
would be inappropriate to expect that any give drilling locations would produce exactly as 
mapped, there are simply too many variables and the algorithm is designed to form generalized 
solution (Figure 7). Our goal is to use this generated map as the basis for an expert system that 
will quantify the risk associated with each prospect by answering questions often posed by 
human experts exploring in the Brushy Canyon, as well as questions posed by statistical analyses 
of the data itself. 
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Conclusions 
Applying the technologies of fuzzy ranking and neural network analysis has allowed the 

generation of a “look here” map for the Brushy Canyon formation of the Delaware basin. It has 
been estimated, by us, which between 350 and 850 million barrels of oil remain to be recovered 
from just the New Mexico portion of the Delaware basin in the lower Brushy Canyon 
formation”. However, high water cuts and thin interbedded layers, which make log analysis less 
reliable, make production expensive. At this stage of the project we have already generated a 
map, which will allow explorationists to focus on underexplored productive regions, and allow 
testing through recompletions in many areas. As the expert system is developed, the presented 
“look here” map will be refined and tested under a barrage of questions which mimic those used 
by human explorationists and more reliable and consistent risk estimates should result for each of 
60,478 potential 40-ac drilling sites in the New Mexico portion of the Delaware basin at an 
accelerated pace. 
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TABLE 2. VARIABLES SELECTED AS OPTIMAL /I 
II 4 

I I 
I 20 1 0.88185640 11 
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Figure I. Conventional cross plot of a random data set (O-l). No correlation between X 
and Y. The trend is 0.5 (average between 0 and I) is not evident. For each point a fuzzy 
membership function is defined, two example functions are shown on this plot. 
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Figure 2. A conventional cross plot of a rando m data set (O-l) plus a square root trend. 
Again two sample fuzzy membership functions are illustrated 
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Figure 3. Fuzzy ranking curves. The trends are clearly evident. 
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Figure 4. Crossplot showing training results for the 4-l O-l O-l Figure 5. Test points withheld from regression analysis. 
neural network used to form the regression relationship between 
4 regional data attributes anmd ave BOPM for lR year production. 
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Effects of Overtraining 
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Figure 7. Neural Network Analogy. Square points are the complete data set in 
this simple example. Assume that only the points with diamonds are known 
and you want to find a solution. If  you fit a polynomial to those four points you 
can easily fnd a solution in which the training data is exactly fit by the regression 
equation. However, as you acquire more data it becomes obvious that the solution 
is not good at all, and cannot predict accurately other points in the over-all data 
set. A straight line tit to the originally known data does not fit exactly, but does 
allow a more accurate prediction of the other points in this simple distribution. 
This shows by analogy the power of neural networks to find general solutions 
without knowing the complete data distribution 
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