The subsiding Apennine Foredeep harbours an exceptionally thick and accurate registration of the Quaternary sedimentary evolution. Only the youngest portion (<3 ka) of this high resolution record can be directly accessed in outcrops, whereas the older parts are buried beneath contiguous marine and continental area. This research is aimed at the understanding of the depositional evolution over the last 125 ka, through the interdisciplinary integration of offshore and onshore research. The offshore interpretation is based on high frequency, high resolution seismic profiling, associated with coring; the onshore data derived from stratigraphic drilling, penetrometer measurements and, for the outcropping units, from photointerpretation, sedimentological sampling and archaeological investigation. Micro- and macro-paleontological determination and C14 dating were carried on both off- and onshore cores. The sedimentary record of the last glacio-eustatic fluctuation, taking place during the late Quaternary (ca 125-0 ka B.P.), can be subdivided into three well defined sequence stratigraphic units (LST, TST and HST), separated by the transgressive (ts) and the maximum flooding (mfs) surfaces. This sequence stratigraphy framework enables the stratigraphic correlation to be carried on from offshore into inland areas, despite the contrasting off- and inshore investigation methodologies.

During the last glacial maximum, the Adriatic Sea was almost completely exposed under subaereal conditions. The Po River delta was prograding 300 km away from the present day coastal area, which was characterized by braided river middle alluvial-plain sedimentation. In the present-day Po Delta zone, this coarse sand body, associated with cold climate mammal remains, forms the LST and corresponds to the shallower confined subsurface aquifer. In this area, during the early post-glacial phase, an erosive discordance was cut into the older alluvial deposits, producing a gently incised valley landscape. The post 18 ka relative sea-level rise was very quick and widespread, taking place over a low-gradient alluvial plain, which, progressively flooded, became an epicontinental shelf (fig 1), mainly bottomed by the ravinement surface, directly cutting continental deposits. This fast transgressive environmental innovation was
however punctuated by episodes of lowered rate of sea-level rise. Despite the
transgression quickness, patchy backstepping paralic deposits, ranging in age from
14 to 7 ka are therefore well recorded. For example, during the Younger Dryas cold
event, a prograding coastal body on the Adriatic shelf records a short phase of
reduced relative sea level rise, matched with an increase in the sediment supply.
After the Younger Dryas event, the late transgressive back-stepping systems tract
accumulated near the present day coast line, in fresh water and brackish
environments, producing a low permeability threshold, sealing the underlying aquifer
(Fig. 2 and 3). The maximum transgression coast line was reached at about 5,500 a
B.P. (Fig. 4) and it is presently buried 20 to 35 km inland, at depth exceeding 10 m,
beneath the modern plain. During the highstand progradation phase, the Po Delta
distributary channels laterally migrated over more than 80 km. Significant climatic
and oceanographic modification took place even over the highstand short time span.
At about 3,000 years ago (Bronze Age) the longshore drift was much stronger then
the modern one, enabling Apennine gravel to reach the Po Delta area; at the same
time an increased wind activity was recorded by the development of significant
aeolian dune fields, reaching elevations of at least 12 m above sea-level. Generally,
the moist and cold climatic phases were characterized by higher drainage system
instability and faster delta progradation than the arid ones. The complex depositional
evolution of the delta system controlled the development of important Etruscan,
Roman and Medieval towns (Adria, Spina, Ravenna, Ferrara, and Venice) but
eventually it was in turn largely affected by land reclamation works and the impact of
other human activities. The present day delta system is largely artificial in nature,
since it was initiated by a man-made mouth cut, aimed at avoiding the silting up of
the Venice Lagoon, early in the 17th Century.
A detailed knowledge of the subsurface stratigraphy, beside providing a modern
analogue for ancient deltaic reservoir systems, is fundamental for an effective
environmental management of this fragile area, which is the site of natural gas and
geothermal exploitation and other important economic activities.
Fig. 1 The different phases of the transgressive widening of the Adriatic Sea, depicted in their areal evolution, vertical organization and chronological framework, in calibrated years B.P..
Fig. 2 High resolution seismic profiles showing the sequence stratigraphic off-shore architecture by the present day Po Delta area. View from south-east, assonometric projection.
Fig. 3 The late Quaternary depositional architecture in the present-day Po Delta and the areal distribution of the various highstand progradational phases, related to the lateral migration of the distributary channels. Green area correspond to continental deposits, yellow zones to coastal sediments, mainly sand, the blue ones to open marine accumulations, mainly muds. Note in the map the location of the stratigraphic profile.
Fig. 4 The chronostratigraphic interpretation of the previous profile, based on carbon 14 dating and, for the younger units, on archaeological data. Color meaning as above, light green corresponds with condensed interval under continental to brackish conditions.