--> ABSTRACT: Experimental Measurement of Vertical and Horizontal Permeability of Storage Domain Rocks from the Krechba Field, Algeria and Controls on Their Permeability, by Armitage, Peter J.; Worden, Richard H.; Faulkner, Daniel R.; Aplin, Andrew C.; Butcher, Alan R.; Iliffe, James; #90135 (2011)
[First Hit]

Datapages, Inc.Print this page

Experimental Measurement of Vertical and Horizontal Previous HitPermeabilityNext Hit of Storage Domain Rocks from the Krechba Field, Algeria and Controls on Their Previous HitPermeabilityNext Hit

Armitage, Peter J.1; Worden, Richard H.1; Faulkner, Daniel R.1; Aplin, Andrew C.2; Butcher, Alan R.3; Iliffe, James 4
(1)Department of Earth and Ocean Sciences, University of Liverpool, Liverpool, United Kingdom. (2) School of Civil Engineering and Geosciences, Newcastle University, Newcastle, United Kingdom. (3) Intellection Pty Ltd, Milton, QLD, Australia. (4) BP Exploration, BP, London, United Kingdom.

Rock properties play a crucial role in determining the fluid flow properties of a structure and so are important during exploration, appraisal and field development. For unconventional reservoirs, it is of critical importance to understand the controls on fluid flow, requiring increased knowledge of their petrophysical and petrological characteristics. Previous HitPermeabilityNext Hit was measured experimentally using custom-made apparatus across a range of effective pressures for samples (including tight reservoir, caprock, and fluid flow barriers) of a natural tight gas storage domain, and current CO2 storage reservoir, from the Krechba Field, Algeria. Previous HitPermeabilityNext Hit was measured perpendicular to bedding (vertical Previous HitpermeabilityNext Hit, kv) and parallel to bedding (horizontal Previous HitpermeabilityNext Hit, kh). Mercury injection porisimetry data, textural and mineralogical data from traditional light microscopy, backscatter secondary electron microscopy (BSEM), cathodoluminescence (CL) techniques and the new QEMSCAN® technique were used to elucidate controls on Previous HitpermeabilityNext Hit. Previous HitPermeabilityNext Hit was as low as 10-23 m² and thus lies at the very lower end of values reported for fine-grained siliciclastic caprocks. Previous HitPermeabilityNext Hit is effectively controlled by porosity, mean pore throat radius and percentage clay fraction. Previous HitPermeabilityNext Hit generally decreases with decreasing porosity and pore throat radius and increasing clay mineral content. Scatter in the trends was caused by the heterogeneous distribution of clay minerals within samples leading to extreme kh/kv ratios (50,000). Primary depositional features led to contrasting layers of relatively low and high Previous HitpermeabilityNext Hit within individual samples. Vertical Previous HitpermeabilityNext Hit is controlled by the lowest Previous HitpermeabilityNext Hit layer. Horizontal Previous HitpermeabilityNext Hit is controlled by the highest Previous HitpermeabilityTop layer. Samples with the same porosity, mean pore throat size and clay mineral content can have kh/kv differing by >4 orders of magnitude. If clay minerals are localised into clay-rich beds sandwiched between quartz-rich beds there is an extreme kh/kv ratio but if clay minerals are disseminated throughout the rock, kh/kv approaches unity.

 

AAPG Search and Discovery Article #90135©2011 AAPG International Conference and Exhibition, Milan, Italy, 23-26 October 2011.